
Bruno Ricardo Leitão Faria

SELF-ORGANISING ENGINE FOR THE
CLOUD-TO-EDGE CONTINUUM

September 2023

Dissertation in the context of the Master in Informatics Engineering, specialisation
in Intelligent Systems, advised by Prof. Dr. Karima Velasquez and Prof. Dr. David
Abreu and presented to the Department of Informatics Engineering of the Faculty

of Sciences and Technology of the University of Coimbra.

DEPARTMENT OF INFORMATICS ENGINEERING

Bruno Ricardo Leitão Faria

SELF-ORGANISING ENGINE FOR THE
CLOUD-TO-EDGE CONTINUUM

September 2023

Dissertation in the context of the Master in Informatics Engineering,
specialisation in Intelligent Systems, advised by Prof. Dr. Karima Velasquez
and Prof. Dr. David Abreu and presented to the Department of Informatics
Engineering of the Faculty of Sciences and Technology of the University of

Coimbra.

https://orcid.org/0000-0002-0154-1410

BibTEX:

@mastersthesis{faria_msc_thesis,
author = {Bruno Ricardo Leitão Faria} ,
title = {Self-organising engine for the Cloud-to-Edge continuum} ,
school = {University of Coimbra} ,
year = {2023} ,
month = sep,
keywords = {Service Function Chains, Self-Healing, Machine Learning} ,

}

This copy of the thesis has been supplied on the condition that anyone who con-
sults it is understood to recognise that its copyright rests with its author and that
no quotation from the thesis and no information derived from it may be pub-
lished without proper acknowledgement.

Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os direitos
de autor são pertença do autor da tese e que nenhuma citação ou informação obtida a partir
dela pode ser publicada sem a referência apropriada.

This work is funded by the project OREOS (POCI-01-0247-FEDER-049029), co-
financed by the European Regional Development Fund (FEDER), through Por-
tugal 2020 (PT2020), and by the Competitiveness and Internationalization Oper-
ational Programme (COMPETE 2020).

vii

Agradecimentos

Em primeiro lugar, gostaria de agradecer aos meus orientadores, Professora Karima
Daniela Velasquez Castro e Professor David Alejandro Perez Abreu pela opor-
tunidade de realizar este trabalho, pela sua orientação, disponibilidade e apoio
ao longo de todo este processo.

Um especial obrigado também à Professora Marília Pascoal Curado por todo o
apoio e confiança depositada em mim ao longo deste período, despertando em
mim o interesse pela área da investigação.

Aos meus amigos, dos mais antigo aos mais recentes, da primária à universidade,
que me acompanharam ao longo da minha vida, que me apoiaram e que me
ajudaram a criar memórias que levarei para sempre comigo. O meu obrigado por
tudo o que fizeram e fazem por mim.

À Quantunna, bem como a todos os amigos que fiz lá. O meu obrigado por me
terem acolhido e por me terem proporcionado momentos de diversão e folia que
me ajudaram desconectar do projetos e das aulas.

À Ana, quem mais me acompanhou ao longo de todo o desenvolvimento deste
trabalho, pelo teu apoio, carinho, compreensão e reconforto, bem como toda a
felicidade e novidades experienciadas, o meu obrigado do fundo do coração por
tudo o que fizeste e fazes por mim.

Por fim, e o mais importante, queria agradecer a toda a minha família, pais,
padrinhos, tios, primos e avós por sempre acreditarem e apoiarem durante todo
o meu precurso académico. Em especial à minha irmã pelos momentos de feli-
cidade, descontração e de descompressão que me proporcionou ao longo destes
anos.

Por tudo isto e muito mais, o meu profundo Obrigado!

Bruno Ricardo Leitão Faria

ix

Abstract

In the Cloud-to-Edge continuum, heterogeneous devices are distributed in a large
area, which makes it challenging to manage. Furthermore, those devices are
prone to performance degradation or even failures, which can cause the services
to be unavailable or unreliable. Due to the distributed nature of the devices, it is
not attainable to manually detect and recover the failures of the devices. There-
fore, zero-touch techniques are required to manage the devices’ failures to im-
prove the services’ availability and reliability by speeding up the recovery pro-
cess [1].

With this in mind, this work presents a self-organising engine that can be used
to manage the failures of the devices, focusing on Central Processing Unit (CPU)
failures, in a Cloud-to-Edge environment, aiming to improve the service’s avail-
ability and reliability. The proposed engine comprises three main components:
fault detection, prediction, and mitigation, by migrating the heaviest work to a
replica. Besides the engine, a fault injector was also implemented, simulating
various levels of stress to the CPU and Random Access Memory (RAM). The en-
gine was tested in a simulated environment, using the COupled Simulation and
Container Orchestration framework (COSCO) simulator [2].

The results show that the fault injection component is able to simulate stress on
the devices, which can lead to failures. Additionally, the fault detection compon-
ent can detect the failures of the devices after they occur. Moreover, the fault mit-
igation component can alleviate the failures of the devices using replicas and thus
allow the service to continue to operate. Finally, the fault prediction component
can predict CPU failures with an f1 score of around 87% and 73% for binary and
multi-class classification problems, respectively.

Keywords

Service Function Chains, Cloud-to-Edge Continuum, Self-Healing, Machine Learn-
ing, Time-Series Classification.

xi

Resumo

Num continuum de Nuvem-a-Ponta, os dispositivos estão distribuídos por uma
vasta área, o que torna desafiante a sua gestão. Além disso, esses dispositivos
estão sujeitos a degradação de desempenho ou até mesmo a falhas, o que pode
levar a que os serviços fiquem indisponíveis ou não fiáveis. Devido à natureza
distribuída dos dispositivos, é impossível detetar e recuperar manualmente as
falhas dos dispositivos. Portanto, são necessárias técnicas de toque-zero para
gerir as falhas dos dispositivos e, assim, melhorar a disponibilidade e fiabilidade
dos serviços, acelerando o processo de recuperação [1].

Tendo isto em conta, este trabalho apresenta um mecanismo auto-organizável
que pode ser utilizado para gerir as falhas dos dispositivos, com foco em falhas
na CPU, num ambiente Nuvem-a-Ponta, visando melhorar a disponibilidade e
fiabilidade dos serviços. O mecanismo proposto é composto por três compon-
entes principais: deteção, previsão e mitigação de falhas, através da migração
das tarefas mais pesadas para uma réplica. Além do mecanismo, também foi
implementado um injetor de falhas que simula vários níveis de stress na CPU e
RAM. O mecanismo foi testado num ambiente simulado, utilizando o simulador
COSCO [2].

Os resultados preliminares mostram que a componente de deteção de falhas con-
segue detetar as falhas dos dispositivos após a sua ocorrência. Além disso, a
componente de mitigação de falhas consegue aliviar as falhas dos dispositivos
utilizando réplicas e, assim, permitir que o serviço continue a funcionar. Adicion-
almente, a componente de injeção de falhas é capaz de simular stress nos dispos-
itivos, podendo eventualmente levar a falhas. Por fim, a componente de previsão
de falhas consegue prever falhas na CPU com um f1 score de cerca de 87% para
problemas de classificação binária e 73% para problemas de classificação multi-
classe.

Palavras-Chave

Cadeias de Função de Serviço, Continuum de Nuvem-a-Ponta, Auto-Recuperação,
Aprendizagem Computacional, Classificação de Séries Temporais.

xiii

Contents

List of Figures xxi

List of Tables xxiii

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Contributions . 4
1.4 Document Structure . 5

2 Background 7
2.1 Service Function Chains . 7
2.2 Fault Management . 9

2.2.1 Fault Prediction . 10
2.2.2 Fault Detection . 10
2.2.3 Self-Healing . 10

2.3 Machine Learning . 12
2.4 Feature Reduction, Selection and Importance 13
2.5 Summary . 14

3 State of the Art 15
3.1 Fault Management . 15

3.1.1 Fault Prediction . 16
3.1.2 Fault Detection . 18

3.2 Service Function Chain . 19
3.3 Analysis . 20
3.4 Summary . 21

4 Proposed Solution 23
4.1 Proposed Framework . 23
4.2 Experiments . 25
4.3 Summary . 26

5 Simulation Methodology 29
5.1 Simulator . 29

xv

5.2 Hosts Configuration . 30
5.3 Workload Configuration . 32
5.4 Adding SFC support . 35
5.5 Fault Injection . 36
5.6 Failure Detection and Mitigation . 39
5.7 Additional Modifications . 42
5.8 Summary . 43

6 Simulation Scenarios and Dataset Generation 45
6.1 Scenario 1: Linear Chaining . 45
6.2 Scenario 2: Balanced Fixed Tree . 54
6.3 Scenario 3: Imbalanced Dynamic Tree 56
6.4 Summary . 58

7 AI Models, Configuration and Data Preprocessing 59
7.1 Random Forest . 59
7.2 Neural Networks . 60
7.3 Convolutional Neural Networks . 60
7.4 Evaluation Metrics . 62
7.5 Summary . 63

8 Results and Discussion 65
8.1 RFC results . 65
8.2 NN and CNN results . 68
8.3 New Labels . 73
8.4 Final Results . 74
8.5 Summary . 75

9 Conclusion 77
9.1 Limitations . 78
9.2 Future Work . 79

References 81

Appendix A Exploratory Data Analysis 89
A.1 Scenario 1: Linear Chaining . 89
A.2 Scenario 2: Balanced Fixed Tree . 92

Appendix B AI Models 97

xvi

Acronyms

AI Artificial Intelligence.

ANOVA Analysis of Variance.

AVA-SFC AVailability Aware Service Function Chaining.

BN Bayesian Network.

CNN Convolutional Neural Network.

COSCO COupled Simulation and Container Orchestration framework.

CPU Central Processing Unit.

DNN Deep Neural Network.

DT Decision Tree.

DTC Decision Tree Classifier.

EM Expectation Maximization.

ETSI European Telecommunications Standards Institute.

FCM Fuzzy C Means.

FMS Fault Management System.

FN False Negatives.

FP False Positives.

GPU Graphics Processing Unit.

ICT Information and Communication Technology.

IPC Instructions Per Cycle.

IPS Instructions Per Second.

k-NN k-Nearest Neighbours.

xvii

LAN Local Area Network.

LASSO Least Absolute Selection and Shrinkage Operator.

LOF Local Outlier Factor.

LOP Local Outlier Probability.

LSTM Long Short-Term Memory.

MIPS Million Instructions Per Second.

ML Machine Learning.

MSE Mean Squared Error.

MTTF Mean Time To Failure.

NBC Naive Bayes Classifier.

NFV Network Function Virtualisation.

NN Neural Network.

PCA Principal Component Analysis.

RAM Random Access Memory.

REPTree Reduced Error Pruning Tree.

RFC Random Forest Classifier.

RFR Random Forest Regressor.

RNN Recurrent Neural Network.

RTTF Remaining Time To Failure.

SDN Software Defined Networking.

SF Service Function.

SFC Service Function Chain.

SFP Service Function Path.

SHLLE Supervised Hessian Locally Linear Embedding.

SLA Service Level Agreement.

SMAE Soft Mean Absolute Error.

SMOTE Synthetic Minority Oversampling Technique.

xviii

Acronyms

SOM Self-Organising Map.

SVM Support Vector Machine.

TN True Negatives.

TP True Positives.

TSF Time Series Forecasting.

t-SNE t-Distributed Stochastic Neighbor Embedding.

vCPU Virtual Central Processing Unit.

VM Virtual Machine.

VNF Virtual Network Function.

YAFS Yet Another Fault Simulator.

xix

List of Figures

1.1 Cloud-to-Edge continuum [4]. 1

2.1 High-level NFV architecture framework [5]. 8
2.2 Example of a normal and faulty SFC. 9
2.3 Staged loop of self-healing. 11

4.1 High-Level Proposed Architecture without replicas. 24
4.2 High-Level Proposed Architecture with replicas. 24
4.3 Proposed SFC for the self-healing scenario. 27

5.1 COSCO high level architecture [2]. 30
5.2 Heatmap of the number of possible workloads for each combina-

tion of CPU and RAM multipliers. 34
5.3 Distribution of the containers’ duration. 35
5.4 Distribution of number of containers to arrive. 35
5.5 Flow of containers in the SFC. 36
5.6 Types of faults that can be injected. 37
5.7 Flow of containers in the SFC. 40
5.8 Metrics of the fog host and replica during the fault injection test. . . 42

6.1 Architecture of the first scenario. 46
6.2 Scenario 1 initial metrics. 46
6.3 Scenario 1 metrics. 47
6.4 Scenario 1 - Fault distribution. 50
6.5 Feature reduction for CPU faults in scenario 1. 51
6.6 Pairplot of the CPU metrics collected from the hosts in scenario 1. . 52
6.7 Correlation matrix of the CPU metrics collected from the hosts in

scenario 1. 53
6.8 Architecture of the second scenario. 54
6.9 Pairplot of the CPU metrics collected from the hosts in scenario 2. . 55
6.10 Architecture of the third scenario. Some examples with 30 nodes. . 56

7.1 Architecture of the CNN used for fault prediction. 61
7.2 Example of images generated for the CNN for the multiclass prob-

lem in scenario 3. 62

xxi

8.1 First results of the RFC for the CPU faults in scenario 1. 66
8.2 Difference between the predicted and the actual values for the CPU

faults in scenario 1. 67
8.3 Evolution of the F1 score and loss for NN 1 on the multiclass clas-

sification task in fog hosts of scenario 3. 69
8.4 Confusion matrix for the CPU fault prediction using the best-performing

model in scenario 3. 72
8.5 Fault intensity for IPS faults in dataset from scenario 3. 73
8.6 Distribution of IPS of faults in dataset from scenario 3. 74

A.1 Pairplot of the RAM metrics collected from the hosts in scenario 1. 90
A.2 Correlation matrix of the RAM metrics collected from the hosts in

scenario 1. 91
A.3 Pairplot of the RAM metrics collected from the hosts in scenario 2. 93
A.4 Correlation matrix of the CPU metrics collected from the hosts in

scenario 1. 94
A.5 Correlation matrix of the RAM metrics collected from the hosts in

scenario 1. 95

xxii

List of Tables

3.1 Summary of the most relevant algorithms in the state-of-the-art. . . 21

5.1 Azure’s B-series burstable VM sizes. 30
5.2 Additional Host Characteristics. 31
5.3 BitBrains First Metrics of the First VM. 33

6.1 Scenario 1 Hosts Configuration. 46
6.2 Sample of the dataset for CPU faults in scenario 1. 48
6.3 Sample of the dataset for RAM faults in scenario 1. 48
6.4 Feature importance for CPU faults in scenario 1. 50
6.5 Scenario 2 Hosts Configuration. 54
6.6 Scenario 3 Hosts Configuration. 58

8.1 Evaluation results for RFC in scenario 1. 68
8.2 Mean evaluation results for the fine-tuned versions of RFC in scen-

ario 1. 69
8.3 Evaluation results for RFC in scenario 2. 70
8.4 Evaluation results for RFC in scenario 3. 71
8.5 Evaluation results for NNs in scenario 3. 71
8.6 Evaluation results for CNNs in scenario 3. 72
8.7 Evaluation results for NNs in scenario 3 with the new labels. 75
8.8 Evaluation results for CNNs in scenario 3 with the new labels. . . . 75
8.9 MSE results for RFR in scenario 3. 76

A.1 Description of the dataset for scenario 1. 89
A.2 Description of the balanced dataset for scenario 2. 92
A.3 Feature importance for CPU faults in scenario 2. 96

xxiii

List of Listings

5.1 Fault injection process. 38
5.2 Failure detection and mitigation process. 41
6.1 Dynamic tree building process. 57
7.1 Parameters used in the fine-tuning of the RFC for scenario 1. 60
8.1 Best parameters found for the RFC for the CPU faults multiclass

problem in scenario 1. 67
B.1 Architecture of the Neural Networks used in scenario 3. 98

xxv

Chapter 1

Introduction

Smart Cities are a paradigm focused on creating efficient urban environments by
making use of information and communication technology, such as sensors and
actuators, to sense, analyse and react to the city’s needs [3]. One widely adopted
approach is the Cloud-to-Edge continuum, where devices, besides having a wide
variation in resources, are distributed across a large area. Figure 1.1 illustrates the
Cloud-to-Edge continuum, where the Cloud is located at the top, having more re-
sources, such as computational power and storage, at a cost of higher latency, and
the Edge is located at the bottom, having less computational power and storage
but with lower latency.

Figure 1.1: Cloud-to-Edge continuum [4].

In that environment, there are a plethora of devices that need to be monitored
and managed in order to provide a good service to the citizens. Some of them
are critical, such as the traffic lights, and some of them are not critical, such as
the sensors. In critical services, the failure of a device can cause a big impact on
the city, such as the malfunction of a traffic light, which can cause a traffic jam.
Therefore, availability and reliability are very important factors in this scenario.

1

Chapter 1

Consequently, it is important to have a fault management system that can detect,
predict and mitigate the failures of the devices to provide a good service to the
citizens and to avoid the impact of the failures in the city.

With this in mind, this work presents a self-organising engine that can be used
to manage the failures of the devices in a Cloud-to-Edge environment, aiming to
improve the availability and reliability of the services.

The remainder of this chapter presents the motivation for this work, followed
by the identification of the main and specific objectives to be attained. Then the
contributions of the work during the development of this thesis are presented.
Finally, the last section presents the structure of the thesis, indicating what will
be addressed in the next chapters.

1.1 Motivation

Technology’s rapid advancement and connection with the physical environment
hold an enormous promise for transforming today’s large cities into smart cities.
In these intelligent environments, Cloud-to-Edge computing is a widely adopted
approach, where there is a massive number of different connected devices that
are prone to performance degradation or even failure. In order to cope with the
diversity of these services and, avoid the dependency on dedicated hardware, the
use of virtualisation techniques, such as Network Function Virtualisation (NFV)
and Service Function Chain (SFC), has been widely adopted in the last years [5].
However, when a node fails, the whole service is affected or even interrupted. In
a real scenario, this can have a big impact on the city, such as the malfunction of
a traffic light, which can cause a traffic jam, or even problems in the function of
hospitals, banks and other critical services.

Research has been carried out in the area of fault management to combat this
hardware degradation and failure problem. Given the complexity of this envir-
onment, due to the high number of devices and its heterogeneity, it is necessary
to automate the fault management process. That is, zero-touch self-organising
techniques must prevail over manual intervention. Here, self-healing attempts
to lessen or recover from flaws by automatically activating measures to correct
them [1].

When implemented to automate the fault management process, Artificial Intelli-
gence (AI) approaches are proven to be a potent tool for making intelligent de-
cisions by learning patterns from data and using them to try to predict future
behaviour. To be able to do so, it is pivotal to monitor all the assets in the envir-
onment, physical and virtual devices, services and applications, to try to detect
anomalies before failures even occur and thus plan and speed up the recovery of
those services.

2

Introduction

In this context, this is primary the motivation for the development of this work:
to develop a self-organising engine for the Cloud-to-Edge continuum, which can
applied to smart cities, that can automate the fault management process. This
framework will use a zero-touch approach to detect and, via Machine Learning
(ML) techniques, predict the occurrence of hardware faults, as well as mitigate
them by introducing replicas. It will be composed of a central controller, which
has a global view of the system, monitoring all the devices, gathering data, and
making decisions based on the information collected.

1.2 Objectives

The main goal of this work is to develop a self-organising engine for the Cloud-to-
Edge continuum that can automate the fault management process. To attain this
zero-touch self-healing capability in SFC environments, the following objectives
were defined:

• Design and implement a failure detection system for the Cloud-to-Edge
continuum

• Measure the performance of the use of replicas to mitigate failures in the
Information and Communication Technology (ICT) infrastructure.

• Design and implement a fault prediction system.

• Validate and evaluate the proposed framework in a controlled testbed.

These objectives were designed in chronological order, thus providing a guide for
the work to follow.

3

Chapter 1

1.3 Contributions

The main contributions of this thesis are the following:

• A survey of the state-of-the-art in the area of fault management.

• Extensions to the COupled Simulation and Container Orchestration frame-
work (COSCO) simulator to support:

– SFC.

– Fault injection.

– Failure detection and mitigation.

– Capability to generate datasets for fault prediction.

All the developed material is available on a public repository 1.

• Three different datasets that can be used for fault prediction in Cloud-to-
Edge computing environments.

• Mechanisms for fault prediction based on various ML models and approaches.

Partial results of this work were presented at:

• Bruno Faria, David Abreu, Karima Velasquez and Marília Curado. "Self-
organising Engine for the Cloud-to-edge Continuum". RTCM 2023 - 34th Sem-
inar on Mobile Communications Thematic Network.

Presented on 7th of July 2023.

There is also one article in preparation to be submitted at:

• Bruno Faria, David Abreu, Karima Velasquez and Marília Curado. "Self-
organising Engine for the Cloud-to-edge Continuum". DML-ICC 2023 - 3rd
Workshop on Distributed Machine Learning for the Intelligent Computing
Continuum in conjunction with IEEE/ACM UCC 2023.

To be submitted on 21st of September 2023.

1https://github.com/brunofaria1322/COSCO

4

https://github.com/brunofaria1322/COSCO

Introduction

1.4 Document Structure

The remainder of this thesis is organised as follows:

Chapter 2 presents the necessary background knowledge, presenting the main
concepts of SFC, fault management, self-healing and ML.

Chapter 3 offers the state-of-the-art revision in the area of fault management, tak-
ing into account ML algorithms and techniques for fault prediction, fault detec-
tion and self-healing, as well as some related work in the area of SFC and NFV,
mainly regarding the use of replicas.

Chapter 4 presents the proposed solution. It starts with a proposed framework for
the self-organising engine. Then, some of the failures and metrics to be explored
are mentioned, as well as a brief description of the proposed experimentations.

Chapter 5 introduces the simulation methodology. It starts by presenting the
simulator used followed by all the configurations and parameters used in the
simulations. Finally, it presents all the additions made to the simulator to support
the proposed solution.

Chapter 6 presents the scenarios that were implemented in the simulator. For
each scenario, was generated a dataset that is also presented in this chapter, as
well as the exploratory data analysis performed on the datasets.

Chapter 7 presents the ML models used to predict the occurrence of faults in the
generated datasets as well as all the preprocessing steps performed.

Chapter 8 presents an discusses the results obtained when training the ML mod-
els over the datasets.

Finally, Chapter 9 concludes this work and presents some future work directions.

5

Chapter 2

Background

The background information needed to comprehend the rest of the thesis is sup-
plied in this chapter. It is divided into three major sections: Section 2.1 describes
the SFC concept, Section 2.2 defines fault management, Section 2.3 describes a
brief explanation of what ML consists of as well as some of the most common
algorithms used in this thesis and finally, Section 2.4 presents some feature re-
duction, selection and importance techniques.

2.1 Service Function Chains

The European Telecommunications Standards Institute (ETSI) proposed the NFV,
a network architecture concept to change how network operators construct and
maintain networks by adopting virtualisation technology [5]. Virtual Network
Functions (VNFs) are software programs that provide network services, includ-
ing file sharing, directory services, IP configuration, etc., without requiring ded-
icated hardware. They are packaged as Virtual Machines (VMs) or containers on
commodity servers to replace specialised network appliances. An ordered set of
VNFs and subsequent "steering" of traffic via them, known as the Service Func-
tion Chain, are developed to suit various service requirements. Figure 2.1 shows
the ETSI’s proposed NFV architecture framework [5].

7

Chapter 2

Figure 2.1: High-level NFV architecture framework [5].

According to ETSI [5], the NFV architecture framework is composed of three
working domains:

• Virtualised Network Function: software implementation of a network func-
tion that runs on a VM or container over the NFV Infrastructure.

• NFV Infrastructure: a diversity of components that provide the physical
resources supporting the execution of VNFs.

• NFV Management and Orchestration: a set of components that covers the
management and orchestration of physical and virtual resources, including
the VNFs and the NFV Infrastructure. It focuses on all the virtualisation-
specific aspects of the NFV architecture.

In short, an SFC is a sequence of functions running in different devices, such as
VMs or containers, that when executed in a specific order form a chain, providing
a service.

Although NFV has changed the telecommunication sector thanks to the vari-
ous benefits of virtualisation technology, several difficulties must be considered,
particularly concerning fault recovery. The current NFV implementation only
provides a few self-healing functionalities, like ping for a health check, and the
recovery process, which entails tearing down the entire virtual machine and start-
ing over with a new one, is a very expensive process.

8

Background

2.2 Fault Management

Faults, or anomalies, may have various causes, such as hardware failures or de-
gradation, software bugs, human errors, and connectivity loss. These faults, for
example, in an SFC can compromise the performance of the full service, as shown
in Figure 2.2 where a failure in one VNF can compromise the whole service.

(a) Normal

(b) Faulty

Figure 2.2: Example of a normal and faulty SFC.

In the example in Figure 2.2, we have an SFC with four VNFs simulating a simple
application. Here we can see that, in the first case, Figure 2.2a, the whole service
is working as expected as a user can make use of the application and access the
database without any problem. However, in the second case, Figure 2.2b, the
VNF2, which runs the firewall for the application, had a failure and the next VNF
in the SFC, the back end, will never receive the data from the failed VNF, resulting
in a failure in the whole service, turning the application unusable.

Fault Management is a process that aims to detect, isolate, and correct abnormal
conditions in a network [6]. In the context of a Cloud-to-Edge continuum, fault
management is a crucial step to ensure the quality, reliability and availability
of the services. For the scope of this thesis, fault management will be divided
into three main categories: fault prediction, a proactive approach explained in
Section 2.2.1, fault detection, a reactive approach described in Section 2.2.2, and
self-healing, a strategy that aims to recover from faults automatically without any
human intervention, introduced in Section 2.2.3.

9

Chapter 2

2.2.1 Fault Prediction

Fault prediction is a fundamental challenge in fault management [6]. It is a pro-
active approach to fault management that aims to predict upcoming failures or
performance degradation. This technique allows for preventative measures to be
taken, to minimise the impact of the fault on the network, even before the failure
occurs, giving a bigger window of time to take action.

Due to the complexity of modern networks, fault prediction is a challenging task,
and ML techniques have been proposed to improve fault prediction. For that,
there is a need for a large amount of data to train the models, reinforcing the
need for a monitoring system.

2.2.2 Fault Detection

Unlike fault prediction, fault detection is a reactive approach to fault manage-
ment. It is used to identify or classify, faults as soon as possible after a failure
occurs [6]. This approach is more common in the industry, as it is easier to im-
plement and requires fewer resources. Fault detection is a crucial step in fault
management, as it allows for the localisation and mitigation of faults by trigger-
ing actions.

2.2.3 Self-Healing

In traditional systems or networks, operators typically only discover service fail-
ures after receiving several customer complaints. Besides that, the technician’s
knowledge is crucial for troubleshooting and failure recovery. On the other hand,
the objective of self-healing is to carry out these actions automatically and pro-
actively.

According to Salehie and Tahvildari [7], self-healing is a process that is linked
to self-diagnosing,[8], and self-repairing [9]. Self-diagnosing refers to diagnos-
ing errors, faults and failures while self-repairing focuses on recovery from them.
With that in mind, self-healing can be defined as the combining capability of dis-
covering, diagnosing, and reacting to disruptions. It can also anticipate potential
problems, and take proper actions accordingly to prevent that failure. All of these
actions are performed without human involvement so that they remain hidden
from the average user.

10

Background

Both works by Salehie and Tahvildari [7] and Psaier and Dustdar [10] present the
self-healing process as a cycle, as shown in Figure 2.3.

Figure 2.3: Staged loop of self-healing.

The cycle as shown in Figure 2.3, can be summarised as follows:

• Monitoring Process: responsible for collecting and correlating data from
the sensors of the system.

• Detecting Process: responsible for analysing all the samples provided by
the monitoring process and detecting, or even predicting, faults or other
anomalies.

• Deciding Process: responsible for deciding what action should be taken
based on the detected faults.

• Acting Process: responsible for applying the adaptation determined by the
decision process.

Regarding the acting process, in order to recover from faults, Ghosh et al. [11]
present the introduction of redundancy techniques for the healing process. Re-
dundancy techniques are used to increase the availability of the system by provid-
ing a backup system that can take over in case of failure. This backup system can
be a spare component, a backup server, or even a backup network, and is present
in the objectives of this thesis.

11

Chapter 2

2.3 Machine Learning

Machine Learning is a branch of AI and computer science that uses statistical
techniques to give computer systems the ability to learn with data, without being
explicitly programmed, by exploiting hidden patterns in this data [12].

ML and AI in general are heavily utilised to achieve this zero-touch approach
due to the arising complexity of current networks and systems. The main goal
is to train a model that can detect or even predict system failures and take the
appropriate action to prevent them, using the data gathered from the system.

Supervised learning is a subcategory of ML algorithm that learns from labelled
training data. The training data consists of a set of inputs and the corresponding
outputs. The goal of the algorithm is to learn a function that can map the inputs
to the outputs. This function can then be used to predict the output of new inputs
[13].

Random Forest Classifier (RFC) is a supervised learning algorithm that fits sev-
eral Decision Tree Classifiers (DTCs) on various sub-samples of the dataset and
uses averaging to improve the predictive accuracy and control over-fitting. RFC
is one of the most used algorithms in ML due to its simplicity and good perform-
ance.

Support Vector Machine (SVM) is a supervised learning algorithm that can be
used for binary classification problems [14]. It is a binary classifier that separ-
ates the data into classes by finding the hyperplane that maximises the margin
between the two classes. Although it is a binary classifier, it can be used for mul-
ticlass classification problems by using a one-vs-one or one-vs-all approach. This
means that the multiclass problem is divided into several binary classification
problems, and the results are combined to obtain the final result.

Neural Network (NN) is an algorithm that is inspired by the biological neural
networks that constitute animal brains. It consists of layers of neurons, which are
connected to each other. Each neuron receives an input, performs a computation,
and passes the output to the next neuron. The output of the last layer is the output
of the NN. The connections between the neurons have weights that are adjusted
during the training process. NNs are used for both classification and regression
problems.

Convolutional Neural Networks (CNNs) are a type of NN that is commonly used
for image classification. The main difference between a NN and a CNN is that
the CNN has one or more convolutional layers, which are used to extract features
from the input data. The convolutional layers are composed of filters that, when
applied to the input data result in a feature map.

12

Background

Recurrent Neural Network (RNN) is a type of NN that uses sequential data or
time series data. They are distinguished by their memory as they take informa-
tion from prior inputs to influence the current input and output. This means that
the output of the current input depends not only on the current input like the
previous models, but also on the previous inputs.

Long Short-Term Memory (LSTM) is a type of NN that is also commonly used for
time series prediction. It is a RNN that has a more complex structure using gates
to control the information that is allowed to enter, leave, or be forgotten. This
allows the LSTM to learn long-term dependencies.

Random Forest Regressor (RFR) works in the same way as RFC. The main differ-
ence is that RFR is used for regression problems, while RFC is used for classifica-
tion problems.

2.4 Feature Reduction, Selection and Importance

Feature reduction, selection and importance are techniques used to reduce the
number of features in a dataset. These techniques are used to improve the per-
formance of the models, as they reduce the complexity of the dataset, and also to
improve the interpretability of the models, as they reduce the number of features
to analyse as well as speed up the training process.

Feature Importance is a technique that assigns a score to each feature of the data-
set based on how important it is to the model’s output. The higher the score, the
more important the feature is. Two of the most common methods to calculate
feature importance are Analysis of Variance (ANOVA) and Chi-Square. ANOVA
is commonly used for continuous numerical features, while Chi-Square is used
for categorical features [15].

Feature Selection is a technique that selects a subset of features from the original
dataset whilst discarding the less informative ones. This technique is similar to
Feature Importance. Extra Tree Classifier is one of the most common methods
used for feature selection. It is a tree-based ensemble method that ranks the fea-
tures based on their importance by training several different decision trees and
averaging the results.

Finally, feature reduction is a technique that reduces the number of features in
the dataset by combining them into a smaller set of features. This technique is
different from the previous ones as it creates new features from the original ones.
Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) are two of the most common methods used for feature reduction.

13

Chapter 2

2.5 Summary

In this chapter, the basic knowledge needed to comprehend the rest of the thesis
was presented. Here some of the main concepts of the thesis were introduced,
such as SFC, VNF, fault management, fault prediction, fault detection and self-
healing. Finally, a brief explanation of what ML consists of as well as some of the
most common algorithms was presented.

14

Chapter 3

State of the Art

In this chapter, the state of the art is presented. Section 3.1 presents a comprehens-
ive survey on fault management for networking, which discusses the application
of ML in various networking domains, including fault prediction, fault detec-
tion, and self-healing, which are relevant to the work presented in this thesis.
Section 3.2 discusses some works on Fault Management and self-healing for SFC
as well as the use of replicas. Section 3.3 presents a brief analysis of the state of
the art. Finally, Section 3.4 summarises the whole chapter.

3.1 Fault Management

Boutaba et al. [6] present a comprehensive survey on ML for networking. They
discuss the application of ML in various networking domains, including fault
management, and provide a detailed overview of the state of the art in this field.
They also discuss the challenges and opportunities of ML in networking. Regard-
ing fault management, they divide the state-of-the-art into four categories: fault
prediction, fault detection, fault localisation, and automated mitigation. This sur-
vey’s fault prediction and detection categories are relevant to the work presented
in this thesis. Some of the works cited in this survey are discussed in more detail
in Section 3.1.1 and Section 3.1.2, respectively.

Zhong et al. [16] explore the automated management of containerised applica-
tions using machine learning techniques in container orchestration systems. They
also review current ML-based container orchestration solutions, discussing their
development from 2016 to 2021 and grouping them according to shared charac-
teristics. One of those solutions, regarding anomaly detection, is the work by Du,
Xie and He [17].

15

Chapter 3

Du, Xie and He [17] propose an anomaly detection system (ADS) that addresses
the challenges of monitoring, detecting and diagnosing the root cause of any an-
omalies found in microservice architectures. The ADS comprises a monitoring
module, a detection module, and a fault injection module. They monitor some
critical metrics of the system concerning the CPU, memory and network. For
the detection module, they experiment with SVMs, RFCs, Naive Bayes Classifi-
ers (NBCs) and k-Nearest Neighbourss (k-NNs). In their experimental set, they
present the k-NN as the best-performing algorithm, followed by Bayesian Net-
work (BN). They also mention that SVM is unsuitable for their specific case study
due to the high number of features.

Zhang, Zhu and Hossain [18] present challenges and solutions for Data-Driven
Machine Learning Techniques in the context of self-healing. They classify those
challenges into five categories: (i) data imbalance, (ii) data insufficiency, (iii) cost
insensitivity, (iv) non-real-time response, and (v) multisource data fusion. The
proposed solutions for each of these challenges are: (i) data preprocessing (over-
sampling, undersampling, hybrid sampling and Synthetic Minority Oversampling
Technique (SMOTE)), or algorithmic (one-class classifier and cost-sensitive learn-
ing), (ii) data preprocessing (oversampling and SMOTE), using unlabelled data
(active learning, unsupervised learning and semi-supervised learning), or using
transfer learning, (iii) cost-sensitive learning and introduction of new evaluation
metrics (F1 score, precision, recall, G-mean, ROC curve, AUC, among others),
(iv) proactive response, and (v) data fusion. Finally, they present a case study
where they test some of their solutions and present the results accompanied by a
final discussion.

To summarise, ML has been widely used in the context of fault management. The
main challenges are related to data imbalance, data insufficiency, cost insensitiv-
ity, non-real-time response, and multisource data fusion. Besides that, the high
number of features also poses a challenge to some ML algorithms.

3.1.1 Fault Prediction

BNs are common models used in fault prediction, as can be seen in the works of
Hood and Ji [19], Kogeda, Agbinya and Omlin [20] and Kogeda and Agbinya [21].
BNs are probabilistic models that combine the expected behaviour of a network
with deviations from the normal to predict future faults. However, the authors
identify a common drawback of BNs: they are not sensitive to temporal factors
and cannot model networks that dynamically evolve. To address this issue, Ding
et al. [22] introduces a dynamic BN model that is robust in fault prediction, local-
isation, and cause and effect analysis.

16

State of the Art

Wang, Martonosi and Peh [23] uses supervised learning methods, such as De-
cision Tree (DT), rule learner, SVM, BN, and ensemble methods, to classify the
quality of connections in wireless sensor networks. The findings show that rule
learners and DTs achieve the highest accuracy.

Due to the enormous volume of logs and metrics on a large-scale distributed
network system the work of Lu et al. [24] highlights the importance of feature
extraction, selection, and dimensionality reduction as an essential but non-trivial
prerequisite. The authors present a technique called Supervised Hessian Locally
Linear Embedding (SHLLE) to extract features automatically and generate failure
predictions. Empirical experiments show that SHLLE outperforms the other fea-
ture extraction methods, such as PCA, and classification methods, such as SVM
and k-NN.

Pellegrini, Sanzo and Avresky [25] make use of different ML techniques, such
as linear regression, MP5, Reduced Error Pruning Tree (REPTree), SVM, Least
Absolute Selection and Shrinkage Operator (LASSO), and Least-Square SVM, to
predict Remaining Time To Failure (RTTF) of applications. The authors compare
the Soft Mean Absolute Errors (SMAEs) of these techniques and find that, for
their testbed, REPTree and M5P outperform the other methods. However, the
model has a high prediction error when the system is temporally far from the
failure time.

Wang et al. [26] present the use of Time Series Forecasting (TSF) combined with
ML techniques as a promising approach to improve the accuracy of equipment
failure prediction in an optical network. It uses a kernel function and penalty
factor in a SVM to model non-linear relationships and reduce misclassification,
respectively, achieving 95% accuracy in fault prediction.

Deep Neural Network (DNN) with autoencoders are also used to predict the
inter-arrival time of faults in a network as shown in the work by Kumar, Farooq
and Imran [27]. They compare the performance of this technique with other ML
methods, such as autoregressive NN, linear and nonlinear SVM, and exponen-
tial and linear regression, and find that DNN with autoencoders outperform the
others.

To summarise, ML is a good technique to use for fault prediction due to its ability
to learn from data and make predictions. However, the high number of features
and the lack of data are the main challenges to overcome. Besides that, there are
also problems with the simulation and experimentation of the proposed solutions
due to the artificiality of the data, since immediately injected faults can not be
predicted.

17

Chapter 3

3.1.2 Fault Detection

One of the first works to use ML for fault detection is the one by Maxion [28].

Rao [29] uses statistical hypothesis testing methods to detect faults in a network
but does not use any ML or any AI in general.

In the work by Baras et al. [30], a reactive strategy is implemented to detect and
localise the root cause of faults. The system uses an NN classifier to output a code
representing various fault scenarios, and an expert system is only activated when
a specific confidence value is achieved.

Clustering algorithms are also used for real-time fault detection and classifica-
tion. Qader, Adda and Al-Kasassbeh [31] uses techniques like k-Means, Fuzzy C
Means (FCM) and Expectation Maximization (EM) to classify faults in a network.
The evaluation shows that, although k-Means and EM are faster, FCM is more
accurate.

Moustapha and Selmic [32] make use of RNNs to detect faulty nodes in wireless
sensor networks. They use an RNN to successfully detect faults without early
false alarms in a small network with 15 sensors and synthetically introduced
faults.

Hajji [33] present an unsupervised mechanism for fast anomalies detection in
Local Area Network (LAN) thorough traffic analysis. Experimental evaluation
shows that the proposed tool detects faults in real time on a real network with
high detection accuracy.

The work by Hashmi, Darbandi and Imran [34] uses different unsupervised al-
gorithms, such as k-Means, FCM, Kohonen’s Self-Organising Map (SOM), Local
Outlier Factor (LOF) and Local Outlier Probability (LOP), to detect anomalies in
a network. They analyse a real network failure log dataset that contains records
over 12 months. The results show that SOM outperforms k-means and FCM in
terms of error metric. Furthermore, LOP applied to the SOM is more reliable.

To summarise, there is a lot of research in the field of fault detection using ML
and AI, sometimes combined with fault localisation and classification. However,
the main challenge is to find a way to use these techniques in real-time, since the
time between the fault and the detection is crucial for rapid network or service
recovery.

18

State of the Art

3.2 Service Function Chain

Kaur, Mangat and Kumar [35] present a survey in the field of SFC provisioning
using Software Defined Networking (SDN) and NFV. The takeaways from this
survey are mainly regarding the AVailability Aware Service Function Chaining
(AVA-SFC), the challenges and the research gaps in the field. Regarding AVA-SFC
the authors announce that, for the 21 articles reviewed in this category, most of the
researchers worked on either node or link failure, whereas in a real scenario, the
whole Service Function Path (SFP) has to recover from the failure. Besides that,
the authors also point out that the recovery of nodes and links is always done
after a failure occurs, by assigning the workload of the failed node to another
node, with no redeployment of the failed node. The authors also point out that,
to improve the availability of network services, re-composition, re-mapping, and
re-scheduling of the failed SFC should be automated. This mechanism should not
impact the other service chains to maintain service continuity. Those are the main
challenges and research gaps presented by the authors that are most relevant to
this thesis.

Herker et al. [36] discusses the challenges of implementing NFV in data centres,
with a focus on ensuring high availability. The paper presents algorithms for resi-
liently embedding VNF service chains in a data centre and explores different data
centre topologies to determine the best cost-per-throughput relation for a given
level of resilience and availability. The authors also present two models for the
high availability of SFCs by creating different backup strategies and calculating
the number of backups VNFs required to achieve a given availability.

Medhat et al. [37] discusses the concept of SFC and its use in creating a resilient
network service deployment model. SFC relies on technologies such as SDN and
NFV to create, modify, and delete SFCs in a cost-efficient and rapid way. How-
ever, during the runtime phase, Service Functions (SFs) can be subject to failures,
which can result in an end-to-end failure at the application level. To address this
issue, the paper proposes the use of a resilient SFC Orchestrator, which is capable
of deploying SFCs following the ETSI NFV architectural model, as well as con-
trolling the runtime phase and rerouting traffic in case of faults. Their Fault Man-
agement System (FMS) provides a 1:N redundancy creating only one standby
VNF component for each VNF in the SFC. In case of failure, the FMS reroutes the
traffic to the standby VNF component and removes the failed VNF component
from the SFC. After that, a Heal event is sent to the Orchestrator, which starts
searching for the SFPs involved in order to update them, rerouting the traffic.
The concept is demonstrated using the Fraunhofer FOKUS Open Baton toolkit in
an OpenStack and OpenDayLight-based environment.

19

Chapter 3

Karra and Sivalingam [38] discusses the use of SDN and NFV to provide resilient
services with minimal redundancy. The paper proposes two algorithms for the
migration of functions from failing to functioning servers and for improving the
robustness of failed parts of a SFC. Failure is detected using a heartbeat mech-
anism but, for critical SFCs, the Mean Time To Failure (MTTF) is calculated and,
when it is below a threshold, the migration of functions is initialised. Whenever a
failure occurs, the predecessor of the failed node stores the packets until the SFC
is up and running. Then, it invokes the K-shortest path algorithm for finding the
node(s) for deploying the functions that were previously on the failed node(s).
This acts as an initial solution and makes sure that the whole SFC is up and run-
ning in the minimum possible time. Thereafter, a TabuSearch procedure attempts
to make the SFC robust concerning the metric MTTF, aiming for a better set of
nodes for the failed part of SFC, such that there is an improvement in the min-
imum MTTF compared to the initial solution. The algorithms are studied using
a simulation model, and the results show that reactive handling of failure is feas-
ible while honouring Service Level Agreements (SLAs), and an SFC can be made
robust concerning the considered parameter.

To summarise, regarding SFCs some works focus on fault management and self-
healing. Besides fault detection and prediction, the works also focus on the mi-
gration of VNFs in case of failure. The use of replicas is also a common technique
to ensure high availability.

3.3 Analysis

Table 3.1 summarises some algorithms and techniques for current solutions in the
area of fault detection and prediction. It is composed of 6 columns: the reference,
the type of mechanism, reactive if triggered after the fault occurs or proactive if
triggered before the fault occurs, the features collected and used to train the mod-
els, the output to predict, the ML algorithms explored and finally the evaluation
metrics for those algorithms.

It can be seen that ML is a common technique used in fault management, espe-
cially for fault prediction and detection. However, the lack of data is one of the
main challenges to overcome.

The works here presented, as well as the ones in the previous sections, are relev-
ant to the work presented in this thesis since they inspired the development of the
simulation framework and the models used in the fault prediction experiments.

20

State of the Art

Table 3.1: Summary of the most relevant algorithms in the state-of-the-art.

Reference Type Features Output ML Technique Evaluation

[17] Reactive

System metrics regarding:
CPU
Memory
Network

14 classes:
(3 services x
4 fault types) +
normal + overload

SVM
RFC
NBC
k-NN

Precision, recall and
accuracy round 90%

[18] Reactive

retainability; handover success rate;
reference signal received power;
reference signal received quality;
signal-to-interference-plus-noise ratio;
throughput ·distance

2 classes:
Faulty or not

SVM
SVM + SMOTE
SVM + oversampling

AUC = 0.624
AUC = 0.945
AUC = 0.806

[25] Proactive

System metrics regarding:
Threads
Memory
Swap space
CPU

RTTF

Linear Regression
M5P
REP-Tree
LASSO
SVM
Least-Square SVM

SMAE: 137.600
SMAE: 79.182
SMAE: 69.832
SMAE: 405.187
SMAE: 132.668
SMAE: 132.675

[27] Proactive Historical data of fault occurrence
and their inter-arrival times

Inter-arrival time
of faults

DNN
with Autoencoders

NRMSE: 0.122092
RMSE: 0.504425

[32] Reactive
Previous outputs of sensor nodes and
Current and previous output samples
of neighboring sensor nodes

Approximation
of the output of
the sensor node

RNN
Constant error smaller
than the shown in
their state-of-the-art

3.4 Summary

This chapter presented a survey of the state of the art in the field of fault manage-
ment, including fault prediction, fault detection and self-healing, as well as the
combination with SFC. The use of replicas for recovery of anomalies for SFC was
also explored. Finally, a brief analysis of the state of the art was presented.

21

Chapter 4

Proposed Solution

In this chapter, the proposed solution is presented. In Section 4.1 a framework for
the self-organising engine is proposed. Section 4.2 defines the experiments that
will be performed. Finally, Section 4.3 presents the summary of this chapter.

4.1 Proposed Framework

The proposed framework is composed of three main components: fault detec-
tion, fault prediction and fault mitigation with the use of replicas. The proposed
framework architecture is presented in Figure 4.1.

Figure 4.1 is composed of different nodes with different characteristics, in order
to simulate a Cloud-to-Edge continuum. That means, the cloud nodes will have
more resources and more latency, while the edge nodes will have fewer resources
and less latency. There are already some frameworks that simulate this Cloud-to-
Edge continuum in mind, such as Yet Another Fault Simulator (YAFS) [39] and
COSCO [2]. In the proposed framework, there are a plethora of nodes. For each
node, there is a monitoring tool that sends the information to the fault detection
and prediction system.

After testing with this first framework, and having a working environment, the
next step is to add the fault mitigation system, presented in Figure 4.2. The figure
shows that the fault mitigation system will be composed of replicas of the nodes.
The replicas will be used to mitigate the failures of the whole system. That way,
expanding the previous example of fault in Figure 2.2, Figure 4.3 is introduced,
aiming to show the full self-healing system.

23

Chapter 4

Figure 4.1: High-Level Proposed Architecture without replicas.

Figure 4.2: High-Level Proposed Architecture with replicas.

24

Proposed Solution

In Figure 4.3, a simple SFC is presented, with four nodes, with their normal be-
haviour being represented in Figure 4.3a. Whenever a failure occurs or is pre-
dicted, Figure 4.3b, the replicas will be activated and used to mitigate the failure,
as shown in Figure 4.3c, in order to keep the SFC running.

4.2 Experiments

This work will be divided into seven different experiments or steps in order to
develop the proposed framework.

• Step 1: Linear SFC.

A baseline SFC that does not use any fault management technique will be
deployed. It will consist of three nodes, one for each layer. The SFC will
flow in an unidirectional way, from the edge to the cloud

• Step 2: Failure detection system.

Here simple Central Processing Unit (CPU) and Random Access Memory
(RAM) thresholds will be defined in order to detect the failure of nodes.

• Step 3: Failure migration system.

In this step, the replicas will be deployed and, whenever a failure is detec-
ted, the heaviest virtual function will be migrated to the host’s replica. Each
host will have its unique replica.

• Step 4: Fault injection system.

In this experiment, a fault injection system will be designed and implemen-
ted in order to stress the CPU and RAM of the nodes leading to the failure
of nodes. This will also be used to test the fault detection and mitigation
systems and to generate datasets for the fault prediction system.

• Step 5: Fault prediction.

In this step, the fault prediction system will be developed in order to predict
the faults in nodes. For that, some classification models will be explored.

• Step 6: The second scenario.

Here a more complex scenario will be deployed, with more nodes and more
SFCs. This scenario will be in a tree topology, with the SFCs flowing from
the edge to the cloud, which means, from the leaves to the root.

25

Chapter 4

• Step 7: The final scenario.

Finally, the last scenario will be deployed. This scenario will be a more
complex scenario, with more nodes and more SFCs. This scenario will also
be in a tree topology, but with much more nodes in the edge layer than the
fog or cloud. This scenario is the closest to the real-world scenario, but more
complex ones could be deployed.

4.3 Summary

In this chapter, the proposed solution for the problem statement was presented.
The proposed solution is composed of a self-healing framework that will be de-
ployed in a Cloud-to-Edge continuum. This framework will be composed of a
fault detection system, a fault prediction system and a fault mitigation system.
The fault detection system will be used to detect the failure of nodes. The fault
prediction system will be used to predict the failure and anomalies of nodes. Fi-
nally, the fault mitigation system will be used to mitigate the failure of nodes. The
latter will be composed of replicas of the virtual functions that will be deployed
in a different node than the original virtual function. Faults will be detected or
predicted and then mitigated by the replicas.

The proposed experimentation was also presented. There are seven different ex-
periments or steps.

26

Proposed Solution

(a) Normal

(b) Faulty

(c) Recovered

Figure 4.3: Proposed SFC for the self-healing scenario.

27

Chapter 5

Simulation Methodology

The simulation methodology is described in this chapter. First, the used simu-
lator is presented. Then, the hosts’ configuration is presented followed by the
workload description. After that, the main modifications made to the simulator
are described, namely, the implementation of chaining, a fault injection mechan-
ism and a failure detection and mitigation system. Finally, some other important
modifications are shown.

5.1 Simulator

In order to generate the dataset needed to train the fault prediction system, either
a simulator or a real environment is required. A simulator was preferred because
it is easier to control and reproduce the experiments as well as faster and cheaper
to implement, run and maintain. The chosen simulator was COSCO [2].

COSCO is an AI-based container orchestrator for edge, fog and cloud computing
environments. Its main goal is to optimise resource allocation to reduce the cost
of the infrastructure and energy consumption, being used to test, train and val-
idate various task-scheduling algorithms. As Figure 5.1 illustrates, it is divided
into two main components: the simulator and the framework, corresponding to
simulated and physical environments, respectively.

The simulator emulates the hosts, being able to define the hosts’ characteristics,
and workloads, which can use Azure and BitBrain datasets built with real-world
data. The framework uses physical computational nodes, in the same Virtual
Local Area Network (VLAN), as hosts and instantiates the tasks as Docker con-
tainers. The framework can communicate with the simulator via HTTP REST
APIs. For the purpose of this work, only the simulator was used.

29

Chapter 5

Figure 5.1: COSCO high level architecture [2].

Although COSCO is a great tool and reduced the proposed environment imple-
mentation time, it was not enough to simulate it in its entirety, since it was de-
signed for task placement problems. Therefore, some pruning, configurations
and extensions were made to the simulator in order to create and simulate the
proposed scenarios. These modifications are described in the following sections.

5.2 Hosts Configuration

The hosts’ CPU, RAM and Disk capacities are based on Azure’s B-series burstable
VMs [40], presented in Table 5.1.

Table 5.1: Azure’s B-series burstable VM sizes.

Name vCPU MIPS Memory (GB) Disk (GB)

Standard_B1ls 1 2054 0.5 4
Standard_B1s 1 2054 1 4
Standard_B1ms 1 2054 2 4
Standard_B2s 2 4096 4 8
Standard_B2ms 2 4096 8 16
Standard_B4ms 4 8192 16 32
Standard_B8ms 8 16384 32 64
Standard_B12ms 12 24576 48 96
Standard_B16ms 16 32768 64 128
Standard_B20ms 20 40960 80 160

30

Simulation Methodology

The simulator required a Million Instructions Per Second (MIPS) value to sim-
ulate the CPU capacity, which is not provided by Azure’s website [40, 41]. Ac-
cording to this documentation, a list of processors is used in the B-series. Still,
their MIPS values are not provided since they are no longer relevant for the cur-
rent generation of processors, and no benchmark evaluation was found, for these
processors.

"B-series run on the 3rd Generation Intel Xeon Platinum 8370C (Ice Lake),
the Intel Xeon Platinum 8272CL (Cascade Lake), the Intel Xeon 8171M 2.1
GHz (Skylake), the Intel Xeon E5-2673 v4 2.3 GHz (Broadwell), or the Intel
Xeon E5-2673 v3 2.4 GHz (Haswell) processors." [40]

With this in mind, there was still a need to calculate the MIPS values for each host.
To do so, and with the workloads presented in Section 5.3 in mind, it was decided
that each Virtual Central Processing Unit (vCPU) would have a capacity of 2054
MIPS, which is the value of an Intel Pentium III processor [42]. This resulted in
the estimates presented in Table 5.1, similar to the ones shown in the COSCO
paper [2]. The MIPS values were calculated using the Equation (5.1)

MIPS = vCPU × 2054 (5.1)

In addition to the characteristics introduced in Table 5.1, the simulator needed
more configurations defined based on the COSCO paper [2] and GitHub [43].
With this in mind, Table 5.2 represents the other configurations used in the simu-
lator, according to each host’s layer.

Table 5.2: Additional Host Characteristics.

Layer RAM read RAM write Disk read Disk write Latency Bandwidth
(MB/s) (MB/s) (MB/s) (MB/s) (ms) (MB/s)

Cloud 376.54 200.00 11.64 1.164 76 2500
Fog 360.00 305.00 10.38 0.619 20 2000
Edge 372.00 266.75 13.42 1.011 3 1000

These values do not significantly impact the results since the main focus is on the
CPU, but they must be defined because they are mandatory for the simulator to
work.

31

Chapter 5

5.3 Workload Configuration

To simulate the proposed environment, some workload had to be defined. The
used workload is based on the datasets created by Azure and BitBrains, which
are built with real-world data.

The BitBrains dataset [44] was created using metrics from 1750 VMs from a dis-
tributed datacenter from Bitbrains [45]. It is organised in 2 traces: fastStorage and
Rnd. Because fastStorage is focused on fast storage machines, the more general
Rnd trace was chosen, which contains the performance metrics of 500 VMs. The
Rnd trace contains 11 properties:

1. Timestamp: in UNIX, corresponding to the number of milliseconds since
1970-01-01,

2. CPU cores: number of provisioned virtual CPU cores,

3. Provisioned CPU capacity (requested CPU): the capacity of the CPUs in
terms of MHz, it equals the number_o f _cores × speed_per_core,

4. CPU usage: in terms of MHz,

5. CPU usage: in terms of percentage,

6. Provisioned memory capacity (requested memory): the capacity of the
memory of the VM in terms of KB,

7. Memory usage: the memory that is actively used in terms of KB,

8. Disk read throughput: in terms of KB/s,

9. Disk write throughput: in terms of KB/s,

10. Network received throughput: in terms of KB/s,

11. Network transmitted throughput: in terms of KB/s

Although each file had 11 columns, only 6 were used: provisioned CPU capacity,
memory usage, Disk read throughput, Disk write throughput, Network received
throughput and Network transmitted throughput. Table 5.3 shows the first inter-
val of the first VM of the Rnd trace.

The Azure dataset [46, 47] is divided into 2 traces, corresponding to data from
2017 and 2019. In this work, only the 2019 trace was used which contains inform-
ation about 2 million VMs and 1.9 billion readings. From this dataset only one
column was used: CPU usage.

32

Simulation Methodology

Table 5.3: BitBrains First Metrics of the First VM.

CPU Memory Disk Disk Network Network
capacity usage read write received transmitted
[MHZ] [KB] [KB/s] [KB/s] [KB/s] [KB/s]

5851.9989 520092.8 0.0 0.2667 15.9333 22.0667
5851.9989 536869.6 0.0 0.4 12.6667 17.5333
5851.9989 782934.7 8.4 3.6667 13.6 18.6667
5851.9989 911559.2 0.0 0.8667 15.0667 20.9333
5851.9989 531276.8 0.0 0.4667 12.7333 17.6

With these two datasets in mind, the workloads could be created. They were
created using the BitBrains dataset as a base and then adding the Azure dataset,
by attributing a percentage of the CPU usage of the Azure dataset to each VM of
the BitBrains dataset for each interval.

Since the BitBrains dataset gives the CPU usage in terms of MHz, and no Instruc-
tions Per Cycle (IPC) is provided, and once the simulator requires MIPS values,
the CPU usage was converted to MIPS using the following formula, and consid-
ering that the IPC is 1:

MIPS = Frequency ∗ IPC (5.2)

This means that 500 different containers that simulate work can be created, one
for each VM of the BitBrains dataset. It is intended to simulate a cloud-to-edge
environment, thus, it is necessary to distribute these workloads through the three
layers of the environment, where cloud nodes will have the heaviest workloads
and edge nodes the lightest. To do so, in the first approach, and for the first
scenario presented in Section 6.1, it was attempted to find a cpu_multiplier and
a ram_multiplier in order to fit most of the workloads in the three layers. The
cpu_multiplier and the ram_multiplier are used to multiply the CPU and RAM
usage of each container. The best cpu_multiplier and ram_multiplier combin-
ation was approximated by simulating the workloads and verifying where the
containers would fit. The idea was to use most of the 500 workloads and dis-
tribute them as evenly as possible through the three layers. The results of this
simulation are presented in Figure 5.2.

After some more experimentation, this approach was abandoned because the
number of containers per host per interval was increased and so, these multi-
pliers were reset to 1.

33

Chapter 5

(a) General (b) Closer look

Figure 5.2: Heatmap of the number of possible workloads for each combination
of CPU and RAM multipliers.

Besides the workloads, it is also necessary to define the containers’ duration and
frequency of arrival. The duration of the containers’ execution was defined by
following a normal distribution. The mean and standard deviation of the normal
distribution varied along the experimentations and ended up in the values of 4
and 1, respectively. These values result in the distribution presented in Figure 5.3.

New containers arrive every interval. The number of containers to arrive in each
interval is the value that is being defined. In the first experimentations, for every
interval one new container arrived, for each host in the edge layer. With the
development of the scenarios, this was changed to a Poisson distribution with a
mean of 2. This resulted in the distribution presented in Figure 5.4.

It is important to note that Figure 5.4a represents the true Poisson distribution,
but, since we want to add at least one container per interval, the distribution
presented in Figure 5.4b was used instead. It is the same as the Poisson distribu-
tion but with the probability of 0 added to the probability of 1.

34

Simulation Methodology

Figure 5.3: Distribution of the containers’ duration.

(a) Poisson (b) Poisson Arrival

Figure 5.4: Distribution of number of containers to arrive.

5.4 Adding SFC support

As mentioned before, the COSCO simulator was designed to simulate task place-
ment problems and was therefore not fit to simulate the proposed environment
without some modifications. For each time interval, new containers arrived and a
scheduler decided where to place them. This was not the desired behaviour since
the containers should flow through the environment, and so, one of the main
modifications was the addition of SFC support.

35

Chapter 5

SFC is a technique that allows the creation of a chain of services that must be ex-
ecuted in a specific order. In this work, it is used to simulate the flow of containers
through the three layers of the environment. The flow of containers is presented
in Figure 5.5.

CLOUDFOGEDGENew
containers

Figure 5.5: Flow of containers in the SFC.

The flux of containers starts in the edge and ends in the cloud in a unidirectional
way. The containers arrive at the edge layer and are placed in the edge hosts.
When a container finishes its execution in an edge host, a new container is cre-
ated on the fog layer and placed in a fog host that is connected to the edge host.
Similarly, whenever a container finishes its execution in a fog host, a new con-
tainer is created on the cloud layer and placed in a cloud host that is connected
to the fog host.

5.5 Fault Injection

The fault injector is one of the main contributions of this work. It is used to
simulate the faults that can happen in the environment. The fault injection is
based on the stress-ng tool [48] and is used to simulate recurrent and cumulative
faults.

Stress-ng is widely used in the industry to test the reliability of systems as can be
seen in many works [49–52]. It is a tool used to stress-test a computer system.
It has a wide range of CPU-specific stress tests that exercise floating point, in-
teger, bit manipulation and control flow. There are a plethora of stress-inducing
methods, for example, the computation of Hamming codes, Fibonacci sequences,
recursive calls, a lot of iterations, etc.

From the stress-ng tool, the idea that faults are some real work that is done in
the background was taken. Thus, to simulate stress, the fault injector creates
phantom containers that the host can’t see but consume its resources, using the
same workload as the normal work containers.

36

Simulation Methodology

The work by Soualhia, Fu and Khomh [52] also inspired the fault injector. In this
work, two types of faults are simulated:

• Recurrent faults: They happen recurrently. For example, a recurrent fault
can be a fault that happens every x time interval and lasts y time intervals.
Each time the fault happens, it can have a different intensity.

• Cumulative faults: They can get worse over time. For example, a cumulat-
ive fault can be a fault that happens and then, from time to time, the fault
increases in intensity, getting progressively worse.

From the same work [52], the idea of a fault interval and cooldown interval was
taken. The fault interval is the interval when faults can be injected and the cool-
down interval is the time window between each fault, when no faults are injected
and older faults are cleared. Figure 5.6 shows the fault injection process for recur-
rent and cumulative faults.

NORMAL

CUMULATIVE

RECURRENT

COOLDOWN FAULT TIME

Intensity 1 Intensity 2 Intensity 3

Random intensity

Fault Increase Fault Increase Fault Increase

Figure 5.6: Types of faults that can be injected.

Despite both types of faults having been implemented and tested, this work only
focuses on cumulative faults. In this sense, the fault injection process pseudocode
is presented in Listing 5.1.

37

Chapter 5

1 CYCLE_TIME = COOLDOWN_TIME + FAULT_TIME
2 cycle_stage = current_interval % CYCLE_TIME

3 if cycle_stage == 0:
4 # First interval of cooldown
5 clearFaults()

6 elif cycle_stage >= COOLDOWN_TIME:
7 # Fault time
8 if (cycle_stage - COOLDOWN_TIME) % FAULT_INCREASE_TIME == 0:
9 # Increase fault intensity time

10 if random() < FAULT_PROBABILITY:
11 injectFaults()

Listing 5.1: Fault injection process.

Therefore, for a process where there can be several different intervals for fault in-
tensity increase, as Figure 5.6 shows, the fault injection process works as follows:

1. The fault injector receives the cooldown interval, the fault interval, the in-
crease interval and the probabilities of fault.

2. The main loop starts:

2.1. Waits for the cooldown interval to end.

2.2. Enters the fault interval. The second loop starts (line 6):

2.2.1. Injects faults with the given probability (lines 10 and 11).
2.2.2. Waits for the increase interval (line 8).

2.3. Enters the cooldown interval. Clears all faults (lines 3 and 5).

In the initial stage, there was only 1 phantom container per injection. This was
changed to 2 phantom containers per injection, in order to increase the impact of
the faults once the size of the container was reduced and the number of containers
per host per interval was increased.

Exploring fault injector parameter combinations, and only considering cumulat-
ive faults, the simulator is able to generate different types of datasets. As a result,
3 different datasets could be generated. The following list describes the paramet-
ers used to generate each dataset as well as the type of dataset generated, along
with a brief description.

38

Simulation Methodology

• Normal dataset: No faults are injected.

FAULT_PROBABILITY = 0

• Imbalanced dataset: Faults are injected with a given probability. The vast
majority of the dataset will have no faults. There are more faults with lower
intensity and less faults with higher intensity. There are 3 different levels of
intensity of faults.

FAULT_PROBABILITY = 0.3

FAULT_TIME = 6

FAULT_INCREASE_TIME = 2

COOLDOWN_TIME = 14

• Balanced dataset: Faults are always injected. FAULT_INCREASE_TIME must
be equal to COOLDOWN_TIME. The dataset will have the same amount of data
with no faults as with each level of intensity of faults.

FAULT_PROBABILITY = 1

FAULT_TIME = 15

FAULT_INCREASE_TIME = 5

COOLDOWN_TIME = 5

5.6 Failure Detection and Mitigation

Once faults could be injected, the next step was to detect the failure of a host.
It was decided that when the CPU or RAM usage of a host is above 90% it is
considered a failure.

Now that failures can be detected, the next step is to mitigate them. The mitig-
ation process makes use of the replicas that are created in the chaining process.
These replicas do not receive containers, they only treat migrated containers from
the associated host. Besides the associated host, each replica also has a parent in
the layer above, which is the same parent as the associated host.

When a failure of a host is detected, meaning it is overloaded, the heaviest con-
tainer that is running on that host is migrated to the replica. The heaviest con-
tainer is the one that uses the most CPU or RAM resources, according to where
the host is overloaded.

The migration process is done by moving the container from the host to the rep-
lica, keeping the container’s state. This means that the container does not have
to start from the beginning, it resumes its execution, from where it was, in the
replica until it finishes.

39

Chapter 5

When the container ends its execution in the replica, a new container is created
in the parent of the replica, similar to what happens when a container finishes its
execution in a host. This new container will be placed in the parent of the replica,
which is the same parent as the host, simulating the flow of containers through
the environment. Figure 5.7 shows the flow of containers in a scenario with rep-
licas, both in a normal situation and when a failure is detected and mitigated.

EDGE FOG CLOUD

EDGE FOG CLOUD REPLICAS

WORKERS

(a) Normal

EDGE FOG CLOUD

EDGE FOG CLOUD REPLICAS

WORKERS

(b) Fog Overload

Figure 5.7: Flow of containers in the SFC.

In Figure 5.7a, the containers arrive at the edge layer and follow the regular flow
already described in Section 5.4, Figure 5.5. In Figure 5.7b, the containers arrive
at the edge layer and follow the normal flow until the fog node. In the fog node,
as the host is overloaded, the failure detection system detects the failure and mi-
grates the heaviest container to the replica. The container continues its execution
in the replica until it finishes. When the container finishes its execution in the
replica, a new container is created in the cloud node, which is the same parent as
the host, continuing the normal flow of containers through the environment.

In Listing 5.2 the failure detection and mitigation process pseudocode is shown.

Figure 5.8 shows the behaviour of the fog host and replica during the fault injec-
tion test. The test was done with an COOLDOWN_TIME of 10 and a FAULT_TIME of 10
as well. The FAULT_INCREASE_TIME was set to 1 as well as the FAULT_PROBABILITY.
These would result in 10 different intensities of faults but result in a better visu-
alisation of the failure detection and mitigation system working.

40

Simulation Methodology

1 for host in host_list:

2 # CPU usage above 90% - CPU Failure
3 if host.getCPU() > 90:

4 # All the containers in the host
5 host_containers = getContainersOfHost(host)

6 # All the containers in the host (Instructions Per Second)
7 host_containers_IPS = [
8 container.getBaseIPS() for container in host_containers
9]

10 # Container that consumes more CPU resources
11 # -> has more instruction per second (IPs)
12 heaviest_id = np.argmax(host_containers_IPS)
13 heaviest_container = host_containers[heaviest_id]

14 migrateContainer(heaviest_container, host)

15 # RAM usage above 90% - RAM Failure
16 if host.getRAM() > 90:
17

18 # All the containers in the host
19 host_containers = getContainersOfHost(host)

20 # All the containers in the host (RAM size)
21 host_containers_RAM = [
22 container.getRAMSize() for container in host_containers
23]

24 # Container that consumes more RAM resources
25 heaviest_id = np.argmax(host_containers_RAM)
26 heaviest_container = host_containers[heaviest_id]
27

28 migrateContainer(heaviest_container, host)

Listing 5.2: Failure detection and mitigation process.

41

Chapter 5

(a) CPU Usage. (b) Number of containers.

Figure 5.8: Metrics of the fog host and replica during the fault injection test.

As it can be seen in Figure 5.8, the fog host CPU usage starts increasing at the 10th
interval for 10 intervals. In this time interval, the CPU usage surpasses the 90%
threshold, leading to the failure detection and migration of the heaviest container
to the replica. The CPU usage of the fog host decreases and the CPU usage of the
replica starts to increase.

5.7 Additional Modifications

Aside from the main modifications presented in the previous sections, some other
modifications were made to the simulator. The most important one was the im-
provement of the simulator’s performance by reducing the time complexity. The
simulator was very slow, taking more than 15 hours to simulate 30 runs with 1000
intervals each, in the first scenario. This was a problem because, if the simulator
took that long to simulate the first scenario, which has only 3 hosts, it would take
a lot more time to simulate the second and third scenarios, which have 7 and 25
hosts, respectively. This would be unfeasible due to the time constraints of this
work.

After an exploration of the COSCO source code, it was found that the simulator
had a time complexity of O(n ∗ m), where n is the number of intervals in the sim-
ulation and m is the number of containers created. This happens because, for each
interval, the simulator iterates over all the created containers until that interval.
It is important to note that, in the first scenario, there is only one edge node, res-
ulting in only one entry point for the SFC. Apart from that, containers are being
created in the fog and cloud layers, whenever a container finishes its execution
in the edge and fog layers, respectively. This means that, over the iterations, the
number of containers increases, resulting in a slower and slower simulation.

42

Simulation Methodology

If for this first scenario, the simulator took more than 15 hours, for the second
where there are 4 edge hosts, it would take a lot more than 4 days, and more than
2 weeks for the third scenario.

This problem was solved by changing the simulator’s source code to have a time
complexity of O(n), where n is the number of intervals in the simulation. This
was achieved by removing the loop that iterated over all the created contain-
ers. This way, for each interval, the simulator only iterates over the containers
actively working. This resulted in a significant improvement in the simulator’s
performance, reducing the simulation to less than 1 hour, for the first scenario.
This improvement was also reflected in the second and third scenarios, making it
possible to simulate many more times and allowing the tuning of the parameters
of the fault injector and the simulator.

The number of hosts also plays a relevant role in the simulation time, but, since
the number of hosts does not vary for the same scenario, it was not the main
factor that impacted the simulation time, it is the number of containers created,
which is proportional to the number of intervals.

It is important to remark that, although some pruning was made in order to im-
prove the simulator’s performance, it did not have any impact on the results since
it was only removed iterations over containers that were not actively working.
This means that the results are the same, but the simulation time is reduced.

5.8 Summary

In this chapter, the simulation methodology was presented. The used simulator
was COSCO, which was modified to effectively simulate the proposed environ-
ment.

The hosts’ configuration was presented, as well as the workload used to simulate
the environment, which was based on the datasets created by BitBrains [44] and
Azure [46].

The main modifications made to the simulator were described:

• A chaining mechanism was implemented to simulate the flow of containers
through the environment, from the edge to the cloud unidirectionally.

• A fault injection mechanism was implemented to simulate recurrent and
cumulative faults.

• A failure detection and mitigation system was implemented to detect and
mitigate the failure of a host. Whenever a host was overloaded, the heaviest
container was migrated to a replica of the host.

43

Chapter 5

Finally, some other important modifications were described, like the improve-
ment of the simulator’s performance by reducing the time complexity.

44

Chapter 6

Simulation Scenarios and Dataset
Generation

The implemented simulation scenarios are detailed in this chapter. The scenarios
are divided into three types: linear chaining, balanced fixed tree and imbalanced
dynamic tree. Each scenario is described in detail, including the number of hosts,
the resources of each host and, most importantly, the architecture used to connect
the hosts. The scenarios are used to create the datasets, making use of the fault
injection mechanism, so the datasets and corresponding exploratory data analysis
are also presented in this chapter.

6.1 Scenario 1: Linear Chaining

The first scenario is the simplest one but it is also the most important one because,
with it, it is possible to test the fault injection mechanism and the simulator itself,
as well as to tune the parameters of the fault injection mechanism. Moreover, it
is the one that is used to generate the first dataset, which is used to train the first
models.

It is composed of a linear chaining of hosts, where each host is connected to the
next one. The scenario is the simplest one because it is made up of only three
hosts. One edge host, one fog host and one cloud host, each having a corres-
ponding replica. The architecture of the scenario is shown in Figure 6.1.

For this scenario, the hosts have the same resources as Azure’s B2s, B4ms and
B8ms virtual machines, for the edge, fog and cloud hosts, respectively. These
resource specifications are shown in Table 6.1.

45

Chapter 6

B2s B4ms B8ms

B2s B4ms B8ms

FOGEDGE CLOUD

Figure 6.1: Architecture of the first scenario.

Table 6.1: Scenario 1 Hosts Configuration.

Layer Name MIPS Memory (GB) Disk (GB)

EDGE B2s 4096 4 8
FOG B4ms 8192 16 32
CLOUD B8ms 16384 32 64

Initially, one new container arrived at the edge host every interval, with a dura-
tion following a Normal distribution with a mean of 3 and a standard deviation
of 0.5, N (3, 0.52). This resulted in the metrics presented in Figure 6.2, where H0
is the edge host, H1 the fog host and H2 the cloud host. The simulation was run
for 100 intervals, and no faults were injected, so both metrics were stable and the
replicas were not used.

(a) CPU Usage. (b) Number of containers.

Figure 6.2: Scenario 1 initial metrics.

46

Simulation Scenarios and Dataset Generation

It can be seen in Figure 6.2 that, in this stable version of the scenario, the hosts
only have, on average, 3 to 4 containers running at the same time, which is a very
small number of containers. This is due to the fact that the containers have a
large need for resources, a minimum of 10% and a maximum of 20% of the CPU
capacity of the host, and a small duration combined with a small number of con-
tainers that arrive at the system every interval. This results in a small number
of containers running at the same time, which is not realistic. This problem was
solved by increasing the number of containers that arrive at the system every
interval, now following a Poisson distribution with a mean of 2, P(2), increas-
ing the container’s duration, now following a Normal distribution with a mean
of 4 and a standard deviation of 1, N (4, 12), and, finally, decreasing the CPU
resources consumed by each container. These final values are discussed in Sec-
tion 5.3 and, when combined with the injection of faults, result in the metrics
presented in Figure 6.3. They were chosen because their combination resulted in
a stable scenario, without the CPU usage growing infinitely and always having
some containers running at a given interval.

(a) CPU Usage. (b) RAM Usage.

(c) Number of containers.

Figure 6.3: Scenario 1 metrics.

47

Chapter 6

This version of the scenario is the one that was used to generate the first dataset.
Although there is a reduction of the overall CPU usage per host, in comparison
with the previous version, this was not considered a problem at all because, in
the next scenarios, the fog and cloud hosts will have more children, resulting in a
higher number of containers running at the same time, which will lead to a higher
CPU usage.

That being said, the first dataset was generated and the exploratory data analysis
was performed. For this analysis, all the data from all the hosts was merged into
one unique dataset. This dataset, like the other ones, is composed of 30 simu-
lations, each with 1001 intervals, resulting in a total of 30030 × number_o f _hosts
rows. This was done in order to minimise statistical errors.

For each scenario, 2 different datasets were created, one for the CPU faults and
another for the RAM faults. Each dataset has 4 different labels, one for each fault
intensity, and one for the normal behaviour. Table 6.2 and Table 6.3 show a sample
of the datasets for the CPU and RAM faults, respectively.

Table 6.2: Sample of the dataset for CPU faults in scenario 1.

CPU Number of Base Available IPS Apparent Fault
usage containers IPS IPS cap IPS intensity

6.6 4 467.1 15643.9 16111.0 1060.0 0
31.7 10 551.3 3477.7 4029.0 1278.0 1
16.2 8 748.0 7354.0 8102.0 1313.0 0
23.8 7 257.7 7844.3 8102.0 1927.0 2
15.3 7 399.8 7702.2 8102.0 1242.0 0

Table 6.3: Sample of the dataset for RAM faults in scenario 1.

RAM Number of RAM Available RAM Fault

usage containers size read write size read write intensity

0.6 5 95.1 24.23 24.28 17084.9 335.3 280.7 0
6.7 8 289.5 0.07 0.06 4005.5 371.9 199.9 0
1.4 8 239.3 0.04 0.03 16940.7 360.0 305.0 1
12.7 9 546.6 0.01 0.01 3748.4 372.0 200.0 2
7.8 7 333.2 0.04 0.04 3961.8 371.9 199.9 0

With this modified version of the simulator, metrics related to CPU, RAM, disk
and containers could be gathered, but only the metrics presented in Table 6.2 and
Table 6.3 were used.

48

Simulation Scenarios and Dataset Generation

Those metrics are the following:

1. Number of containers: the number of containers running,

2. CPU usage: in terms of percentage,

3. Base Instructions Per Second (IPS): the base MIPS of the host, it is the sum
of mandatory MIPS of all the containers running on the host,

4. Available IPS: in terms of MIPS,

5. IPS cap: capacity of the host in terms of MIPS,

6. Apparent IPS: the actual MIPS of the host, it is the sum of the MIPS of all
the containers running on the host,

7. RAM usage: in terms of percentage,

8. RAM read, write: in terms of KB/s,

9. RAM size: in terms of KB,

10. Available RAM read, write: in terms of KB/s,

11. Available RAM size: in terms of KB,

After the generation of the dataset, the exploratory data analysis was performed.
The rest of the exploratory data analysis of the dataset is presented in Section A.1.

As Figure 6.4 shows, the dataset is very imbalanced, with the normal behaviour
being the most common one, 88.2% for the CPU faults datasets, followed by the
level 1 fault intensity, 9.4%. This is due to the fact that, besides the time to cool
down, the fault injection mechanism injects faults randomly, so it is expected that
the normal behaviour is the most common one. Fault intensity 1 is the second
most common one because it is the first level of fault intensity, so it is expected.
The fault intensity 3 is, similarly, the rarest one because, for it to happen, the fault
injection mechanism has to inject 3 faults in the same fault interval, which is very
unlikely to happen corresponding to only 0.2% of the dataset.

By analysing the pairplot of Figure 6.6 it can be seen that, for some metrics, there
is a gap in the data. This happens because of the lower number of hosts and the
lack of variability in terms of hosts’ resources, resulting in the data being divided
into 3 groups. With this pairplot, it can also be seen that the faults are not very
well separated in some cases. The faults can be somewhat separated from the
normal behaviour, but the fault intensities are not very well separated from each
other, which could be a problem for the models to learn the differences between
the fault intensities.

49

Chapter 6

(a) CPU faults. (b) RAM faults.

Figure 6.4: Scenario 1 - Fault distribution.

Figure 6.7 shows the correlation between the metrics for the CPU faults dataset.
It can be seen that the features are not very correlated with the faults. The only
values not close to zero are for the cpu and apparentips metrics.

Feature importance was also calculated for the CPU faults dataset. The results are
shown in Table 6.4. It can be seen that, once again, the cpu and the apparentips
metrics appear to be the most important ones. This is due to the direct relation
between the cpu and apparentips metrics. The cpu is the percentage of CPU
used, which is calculated as follows:

cpu = apparentips/ipscap (6.1)

Table 6.4: Feature importance for CPU faults in scenario 1.

Select K Best Feature Importance

ANOVA CHI2 Extra Tree Classifier

cpu 1657.57 1.74e+04 0.210
apparentips 1639.30 1.52e+06 0.208
numcontainers 4.11 1.02e+01 0.296
baseips 2.21 1.43e+03 0.137
ipsavailable 0.71 5.74e+03 0.139
ipscap 0.54 4.35e+03 0.009

Because feature importance and selection did not have a big impact, it was de-
cided to use feature reduction in an attempt to better visualise the data. The
results are shown in Figure 6.5. This reduction did not give a good visualisation
of the data and led to worse results in the models, so it was not used.

50

Simulation Scenarios and Dataset Generation

(a) PCA

(b) TSNE

Figure 6.5: Feature reduction for CPU faults in scenario 1.

51

Chapter 6

Figure 6.6: Pairplot of the CPU metrics collected from the hosts in scenario 1.

52

Simulation Scenarios and Dataset Generation

Figure 6.7: Correlation matrix of the CPU metrics collected from the hosts in scen-
ario 1.

53

Chapter 6

6.2 Scenario 2: Balanced Fixed Tree

The second scenario is a more complex one, with a balanced fixed tree architec-
ture. It is composed of 7 hosts: 4 edge hosts, 2 fog hosts and 1 cloud host, each
having a corresponding replica. The architecture of this scenario is shown in Fig-
ure 6.8. It is more complex because it has more hosts and because they also have
more children, but it is also closer to real-world scenarios where we have more
hosts in the edge and less in the cloud, and more resources in the cloud and less
in the edge. Fog and cloud hosts also receive work from more hosts, which is
more realistic.

Figure 6.8: Architecture of the second scenario.

In the first version of this scenario, the hosts had the same resources as the last
scenario, Table 6.1, but this led to the same problem mentioned in the previous
scenario, the low variability in terms of hosts’ resources. This problem was solved
by assigning a range of resources to each layer instead of one fixed value, as
shown in Table 6.5.

Table 6.5: Scenario 2 Hosts Configuration.

Layer Name MIPS Memory (GB) Disk (GB)

EDGE B1ms - B2s 2054 - 4096 2 - 4 4 - 8
FOG B8ms - B12ms 16384 - 24576 32 - 48 64 - 96
CLOUD B20ms 40960 80 160

For this scenario, only a balanced dataset was generated.

54

Simulation Scenarios and Dataset Generation

Looking at the pairplot of Figure 6.9 it can be seen that the data is more spread
out, which is due to the higher number of hosts and the higher variability in
terms of hosts’ resources. Despite this improvement, there are still some gaps in
the data, which is due to the difference in resources of hosts from different layers,
so the data is divided into 3 groups, one for each layer.

The rest of the exploratory data analysis of the dataset is presented in Section A.2.

Figure 6.9: Pairplot of the CPU metrics collected from the hosts in scenario 2.

55

Chapter 6

6.3 Scenario 3: Imbalanced Dynamic Tree

The third and last scenario is the most complex one. It is composed of 50 nodes:
25 hosts and 25 replicas, which are distributed across the fog and edge layers. For
this, there was a need to create an algorithm to distribute these nodes depicted
in Listing 6.1. The algorithm is very simple and starts by creating a fog host and
respective replica (line 7). Then, according to this node’s capacity, it calculates the
maximum number of children that this node can easily support (line 12). Then,
it creates a random number of children, between 1 and the maximum number
of children, and respective replicas (lines 18-22). This process iterates until the
desired number of nodes is reached. Some verifications are also made during
this process in order to generate the exact number of nodes and to not create any
fog host with no children (lines 14 and 24).

Running this algorithm for 30 nodes resulted in the architecture shown in Fig-
ure 6.10 where in red we see the cloud host, in green the hosts and in blue the
replicas.

(a) 3 Fog Nodes.

(b) 4 Fog Nodes.

(c) 5 Fog Nodes.

Figure 6.10: Architecture of the third scenario. Some examples with 30 nodes.

56

Simulation Scenarios and Dataset Generation

1 hosts_counter = 0 # Number of hosts already generated
2 while hosts_counter < num_hosts:
3 # Remaining hosts to generate
4 remaining_hosts = num_hosts - hosts_counter

5 # FOG
6 fog_id = hosts_counter
7 generateHostAndReplicas("fog", fog_id, None)
8 hosts_counter += 2
9 remaining_hosts -=2

10 # Calculate max children for this fog.
11 # Number maximum of children is proportional to the number of IPS
12 fog_max_children = calculateMaxChildren(fog_id)

13 # EDGE
14 if remaining_hosts < 6:
15 # There are not enough hosts to create a new fog with 1 edge
16 # Add all remaining hosts to the last fog
17 n_edge = remaining_hosts//2
18 else:
19 n_edge = randint(1, min(fog_max_children,remaining_hosts//2))

20 for _ in range(n_edge):
21 generateHostAndReplicas("edge", hosts_counter, fog_id)
22 hosts_counter += 2

23 # If the remaining hosts are less than 4, add them to the last fog
24 if 0 < num_hosts - hosts_counter < 4:
25 generateHostAndReplicas("edge", hosts_counter, fog_id)
26 hosts_counter += 2

Listing 6.1: Dynamic tree building process.

57

Chapter 6

For this final scenario, analogous to the previous one, the hosts had a range of re-
sources in order to have more variability in terms of hosts’ resources. The novelty
here is that the range was increased and the cloud is considered to have infinite
resources, so there is no need to simulate a cloud replica. The resources of the
hosts are shown in Table 6.6.

Table 6.6: Scenario 3 Hosts Configuration.

Layer Name MIPS Memory (GB) Disk (GB)

EDGE B1ms - B4ms & B2ms 2054 - 8192 2 - 8 4 - 16
FOG B12ms - B20ms 24576 - 40960 48 - 80 96 - 160
CLOUD - ∞ ∞ ∞

Though both the CPU and RAM faults datasets were generated, only the CPU
faults dataset was used for the models, since it was the one that had the best
results on the models

There were generated 3 different datasets, one containing only the data from the
edge hosts, one containing only the data from the fog hosts and one containing
the data from both the edge and fog hosts. The reason for this is that the edge
hosts have different resources and workloads than the fog hosts, so it is expected
that the models will learn different patterns for each one.

6.4 Summary

In this chapter, the implemented simulation scenarios were described. The scen-
arios evolved from a simple linear chaining of hosts to a more complex tree ar-
chitecture. The scenarios were used to generate the datasets, making use of the
fault injection mechanism, so the datasets and corresponding exploratory data
analysis were also presented in this chapter.

58

Chapter 7

AI Models, Configuration and Data
Preprocessing

This chapter presents the different models used in this thesis. The models are di-
vided into two categories: classification and regression. The classification models
are used to predict the intensity of the faults, while the regression models are
used to predict the actual MIPS of the faults. The models are presented in the
order they were tested. The first model is the simplest one, and the last one is the
most complex.

7.1 Random Forest

The first model tested is the random forest. The random forest is a supervised
learning algorithm that can be used for both classification and regression.

The Random Forest Classifier was the model chosen to be the baseline model
because it is accurate and fast to train.

In an attempt to try to better improve these results, fine-tuning of the RFC para-
meters was performed. Therefore, a grid search was performed using the Grid-
SearchCV class from the scikit-learn library. The parameters that were tuned and
their values are shown in Listing 7.1.

Finally, in the last version of the dataset, the Random Forest Regressor was also
tested. The RFR is a supervised learning algorithm having the same principal as
the RFC, but instead of predicting a class, it predicts a continuous value.

59

Chapter 7

1 param_grid = {
2 "n_estimators": [50, 100, 200, 500], # default 100
3 "criterion": ["gini", "entropy", "log_loss"], # default "gini"
4 "min_samples_split": [2, 5, 10], # default 2
5 "min_samples_leaf": [1, 2, 5], # default 1
6 "max_features": [None, "sqrt", "log2"], # default "sqrt"
7 "bootstrap": [True, False], # default True
8 }

Listing 7.1: Parameters used in the fine-tuning of the RFC for scenario 1.

7.2 Neural Networks

The second model tested is the Neural Network. The NN is a supervised learning
algorithm that was used for the classification problem.

For the NNs, four different architectures were explored, one more complex than
the other. The architectures are shown in Listing B.1.

Since it is a good practice to normalise the data for NNs, the StandardScaler class
from the scikit-learn library was trained with the training data and used to nor-
malise the training, testing, and validation data. The models were trained for
100 epochs, with a batch size of 128, using the Adam optimizer and the categor-
ical_crossentropy or binary_crossentropy loss functions, depending on the problem.
There was also used the EarlyStopping callback to stop the training if the valida-
tion loss did not improve for 10 epochs, as well as the ReduceLROnPlateau callback
to reduce the learning rate if the validation loss did not improve for 5 epochs.

7.3 Convolutional Neural Networks

The third and last model tested is the Convolutional Neural Network. The CNN
is a supervised learning algorithm that was used for the classification problem.

For the CNNs, only one architecture was implemented, but, two different forms
of normalisation were explored. The architecture is shown in Figure 7.1.

CNNs are mainly used for image classification, but they can also be used for
time series classification. Preprocessing the data is a central step for the CNN
training and evaluation. There is a need to reshape the data to a 3-dimensional
array, where the data is represented as grey-scale images. For that, there is a need
to normalise the data and, in this work, two different normalisation approaches
were explored:

60

AI Models, Configuration and Data Preprocessing

Input Conv1 Conv2

FC1 FC2 FC3

1x6x6 8x6x6 16x6x6

160 64 4

Convolutional + ReLU Fully Connected + ReLU

Final Fully Connected

Figure 7.1: Architecture of the CNN used for fault prediction.

• Local normalisation: normalise the data according to IPS capacity of the
CPU. Because of that, ipscap was removed from the dataset. The number
of containers was normalised according to the maximum number of con-
tainers in the host.

• Global normalisation: All the data, except the CPU usage, was normalised
according to the maximum value of the feature for that layer in the training
dataset.

It is important to note that the CPU usage was normalised the same way for both
approaches, dividing by 100. This is because the CPU usage is a percentage, and
the values are between 0 and 100.

After the normalisation, images of 5 by 5 pixels were created, using 5 intervals
for the first approach, where the ipscap was removed, or 6 by 6 pixels, for the
second approach, using 6 time intervals. The label assigned to each image was
the label of the last interval.

This means that this model is taking advantage of the time series nature of the
data, as the CNN will be able to learn the patterns of the data in the time dimen-
sion by knowing the previous 4 or 5 values.

These transformations of the data resulted in images like the ones of Figure 7.2.

The models were trained for a maximum of 100 epochs, stopping early if the
validation loss had not improved for 10 epochs. The Adam optimizer was used,
with a learning rate of 0.001, and the categorical_crossentropy loss function was
used.

61

Chapter 7

(a) Local Normalisation. (b) Global Normalisation.

Figure 7.2: Example of images generated for the CNN for the multiclass problem
in scenario 3.

7.4 Evaluation Metrics

In order to evaluate and compare the trained models, the choice of metrics can
significantly impact the analysis of the results.

The first, and most common, metric is accuracy which measures the ratio of cor-
rect predictions to the total predictions

The following equation presents the formula for the accuracy, where True Pos-
itives (TP) corresponds to the number of positive examples correctly classified,
True Negatives (TN) the negative examples correctly classified, False Positives
(FP) the number of positive examples wrongly classified and False Negatives
(FN) the number of negatives examples wrongly classified.

Accuracy =
TP + TN

TP + TN + FP + FN
(7.1)

Despite accuracy being one of the most used metrics in many scenarios, it does
not give much information in an imbalanced dataset. This happens because, if
a dataset has 98% of the data in class 0, if a model learns nothing and outputs 0
for every entry, it will predict right 98% of the time, resulting in 98% accuracy.
This is where precision, recall, and the F1 score come into play. These metrics
are particularly valuable in imbalanced datasets because they focus on different
aspects of prediction accuracy that are crucial for specific applications.

Precision quantifies the proportion of true positive predictions out of all positive
predictions made by the model.

Precision =
TP

TP + FP
(7.2)

Recall, also known as sensitivity or true positive rate, measures the ratio of true
positive predictions to all actual positive instances in the dataset.

62

AI Models, Configuration and Data Preprocessing

Recall =
TP

TP + FN
(7.3)

Finally, the F1 score is the harmonic mean of precision and recall, providing a
balanced measure that considers both false positives and false negatives.

F1 Score = 2 × Precision × Recall
Precision + Recall

(7.4)

The aforementioned metrics are widely used for classification tasks, but, when it
comes to regression analysis, they do not work. One commonly used metric in
regression is the Mean Squared Error (MSE).

MSE calculates the average of the squared differences between the actual and pre-
dicted values. Squaring these differences has the effect of giving more significant
weight to larger errors, making MSE particularly sensitive to outliers. As a result,
a lower MSE value indicates better predictive performance.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (7.5)

Where n is the total number of data points, yi represents the actual target value
for the i-th data point and ŷi is the predicted value for the i-th data point. Con-
sequently, (yi − ŷi)

2 is the squared error for the i-th data point.

7.5 Summary

In this chapter, the implemented models were presented as well as the training
configuration. Besides that, some models needed a preprocessing of the data
which was also addressed. Finally, the evaluation metrics were presented as well
as their formula and importance.

63

Chapter 8

Results and Discussion

This chapter presents the results of the experiments in a sequential order and
discusses them.

Section 8.1 presents the results for the RFC for the multiclass and binary problems
for both CPU and RAM faults. It also presents the results when finetuning the
RFC parameters.

Section 8.2 presents the results for the NNs and CNNs for the multiclass and
binary problems focusing only on CPU faults. It also presents the results when
using different normalisation approaches for the CNNs.

Section 8.3 presents the new labels for the dataset, where the IPS of the faults is
also considered.

Finally, Section 8.4 presents the final results, where the same models were trained
and evaluated with the new dataset. Only the multiclass problem was considered,
as it is the one that changed when compared to the previous dataset. For simpli-
city, only the results for the CPU faults are presented. Then, at the end of the
section, the regression problem is mentioned, where the RFR was trained and
evaluated.

8.1 RFC results

For the preliminary results, the datasets generated were used to train and eval-
uate the models. The split was generally performed using 70% of the data for
training and 30% for testing. In order to reduce statistical errors, at least for the
RFC, they were trained and evaluated 50 times, and the results were averaged.
The RFC was chosen because it is a simple model, fast to implement and train,
and can be used as a baseline for the other models.

65

Chapter 8

This section presents results for the multiclass problem, where the models were
trained to predict the fault intensity, and for the binary problem, where the mod-
els were trained to predict if a fault occurred or not, converting any fault intensity
greater than 0 to 1.

The first experimentations with ML were performed using a RFC over the first
version of the dataset generated from the first scenario. Only the binary problem
of the CPU faults dataset was used for this part. Three different models were
trained: one trained and tested with the data regarding the edge host, another
trained and tested with the data of all the hosts, and the last one trained with the
data from the edge and fog hosts and tested with the data from the cloud host.
The results of the performance of the RFC are shown in Figure 8.1.

(a) Trained and tested with
the same host

(b) Trained and tested with
all hosts

(c) Trained with edge and
fog, tested with cloud

Figure 8.1: First results of the RFC for the CPU faults in scenario 1.

It can be seen that, as expected, a model trained for a specific host performs the
best when tested with the same host. However, it is inviable to have a model for
each host, as the number of hosts can be very high in a real scenario. Therefore,
the model trained with all the hosts’ information was used for the next experi-
ments, since it is the one that performs the best when tested with all the hosts.
The model trained with the edge and fog hosts and tested with the cloud host
performed the worst, as the data from the edge and fog hosts is very different
from the data from the cloud host. Figure 8.2 shows the difference between the
true and predicted labels for the best-performing model of the 50 iterations.

After the first results, the first scenario was improved, as described in Section 6.1
Table 8.1 shows the results of the RFC for the CPU and RAM faults.

The results show that the RFC was able to achieve an average F1-score of 63%
for the multiclass problem and 75% for the binary problem for the CPU faults.
Despite having high accuracy, the other metrics show that the model is not per-
forming that well, mainly predicting the RAM faults. This is due to the high
imbalance of the dataset, where the majority of the data is from class 0, which
represents the absence of faults.

Fine-tuning of the RFC parameters was performed resulting in the metrics of
Table 8.2.

66

Results and Discussion

Figure 8.2: Difference between the predicted and the actual values for the CPU
faults in scenario 1.

1 best_params = {
2 'n_estimators': 200,
3 'bootstrap': True,
4 'criterion': 'entropy',
5 'max_features': None,
6 'min_samples_leaf': 1,
7 'min_samples_split': 10,
8 }

Listing 8.1: Best parameters found for the RFC for the CPU faults multiclass prob-
lem in scenario 1.

Since the dataset was imbalanced, the accuracy metric was not a good metric to
evaluate the models. Therefore, the F1-score was used and gave slightly better
results when compared to the previous evaluation metric. The fine-tuning of the
parameters allowed for improving the F1-score for the multiclass problem from
63% to 70% for the CPU faults. For the RAM faults, the F1-score had a slight
improvement from 23% to 25%, but the model overfits the data, as the F1-score
for the training set was 100%. Listing 8.1 shows the best parameters found for the
RFC for the CPU faults multiclass problem in scenario 1.

For dataset 2, despite being a balanced dataset, the results were not as good as
those from scenario 1. This happens because dataset 2, despite having more data,
has more variability in all the features, which makes it harder for the models to
learn, but a better representation of the real world. Table 8.3 shows the results of
the RFC for the CPU and RAM faults.

Finally, for the third scenario, new approaches were introduced. Here, only the
dataset with CPU faults was considered. There were 3 different versions of this
dataset: one with only the data from the edge hosts, another with only the data
from the fog hosts, and the last one with the data from the edge and fog hosts.

67

Chapter 8

Table 8.1: Evaluation results for RFC in scenario 1.

MULTICLASS BINARY

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Mean 0.9318 0.7297 0.5922 0.6384 0.9459 0.8306 0.6780 0.7466
Median 0.9317 0.7359 0.5920 0.6388 0.9460 0.8302 0.6773 0.7462
Std 0.0012 0.0240 0.0119 0.0145 0.0010 0.0074 0.0069 0.0051

(a) CPU faults

MULTICLASS BINARY

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Mean 0.8801 0.2511 0.2500 0.2355 0.8793 0.1341 0.0044 0.0085
Median 0.8801 0.2457 0.2500 0.2353 0.8794 0.1299 0.0042 0.0082
Std 0.0014 0.0180 0.0003 0.0006 0.0015 0.0316 0.0011 0.0022

(b) RAM faults

Initially, as for the other scenarios, the RFC was used to evaluate the dataset.
Results are shown in Table 8.4.

It is important to note that the dataset is very imbalanced, as the majority of the
data is from class 0, which represents the absence of faults. This scenario is also
the one with the most variability in the data, complicating the learning process.
Therefore, the RFC was not able to learn the patterns of the data.

8.2 NN and CNN results

In an attempt to find better results, there were explored two new types of models,
NNs and CNNs.

For the NNs, the data was split into 70% for training, 20% for testing and 10% for
validation.

The evaluation results of the NNs are presented in Table 8.5. Figure 8.3 shows the
evolution of the F1-score and loss for the training and validation sets along the
epochs, for the first NN on the multiclass problem for the fog hosts.

The results show that the NNs were able to achieve better results when compared
to the RFC. The first 2 models performed close to each other, achieving, for the
fog, an F1-score of 60% for the multiclass problem and 80% for the binary prob-
lem, and for the edge, an F1-score of 55% for the multiclass problem and 80% for
the binary problem.

68

Results and Discussion

Table 8.2: Mean evaluation results for the fine-tuned versions of RFC in scenario
1.

Scoring MULTICLASS BINARY

function Accuracy Precision Recall F1 Accuracy Precision Recall F1

F1 0.94 0.78 0.65 0.70 0.95 0.91 0.84 0.87
Accuracy 0.94 0.77 0.61 0.66 0.95 0.91 0.83 0.86

(a) CPU faults

Scoring MULTICLASS BINARY

function Accuracy Precision Recall F1 Accuracy Precision Recall F1

F1 0.78 0.26 0.26 0.26 0.79 0.50 0.50 0.50
Accuracy 0.88 0.22 0.25 0.23 0.88 0.44 0.50 0.47

(b) RAM faults

(a) F1 score (b) Loss

Figure 8.3: Evolution of the F1 score and loss for NN 1 on the multiclass classific-
ation task in fog hosts of scenario 3.

Finally, in order to take advantage of the time series nature of the data, CNNs
were trained. The evaluation metrics for this model are shown in Table 8.6.

The results show improvements in the F1-score when compared to the RFC and
the NNs. The best-performing model was the CNN using the second approach
for the normalisation, which was able to achieve an F1-score of 73% for the mul-
ticlass problem and 87% for the binary problem.

Despite all the efforts, the models were not able to achieve better results for
the multiclass problem. By taking a look at the confusion matrix of the best-
performing model, shown in Figure 8.4, it is possible to see that the model is
confusing classes with the closer ones. For example, the model is confusing class
2 with class 1, and class 3.

69

Chapter 8

Table 8.3: Evaluation results for RFC in scenario 2.

MULTICLASS BINARY

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Mean 0.6538 0.6490 0.6539 0.6510 0.9058 0.9371 0.9373 0.9372
Median 0.6538 0.6491 0.6541 0.6511 0.9058 0.9371 0.9372 0.9373
Std 0.0017 0.0016 0.0016 0.0016 0.0010 0.0011 0.0013 0.0007

(a) CPU faults.

MULTICLASS BINARY

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Mean 0.2654 0.2654 0.2654 0.2654 0.7413 0.7517 0.9783 0.8501
Median 0.2653 0.2653 0.2653 0.2653 0.7413 0.7512 0.9782 0.8502
Std 0.0018 0.0018 0.0018 0.0018 0.0014 0.0014 0.0009 0.0009

(b) RAM faults.

This led to the following question: Is it a problem with the models or the dataset?
To answer this question, the dataset was analysed.

70

Results and Discussion

Table 8.4: Evaluation results for RFC in scenario 3.

MULTICLASS BINARY

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Mean 0.8863 0.6431 0.4897 0.5395 0.9073 0.7635 0.5298 0.6255
Median 0.8863 0.6433 0.4900 0.5397 0.9075 0.7635 0.5301 0.6257
Std 0.0004 0.0053 0.0035 0.0041 0.0004 0.0025 0.0026 0.0019

(a) Edges only.

MULTICLASS BINARY

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Mean 0.8913 0.6937 0.4968 0.5519 0.9111 0.7793 0.5460 0.6421
Median 0.8913 0.6922 0.4966 0.5516 0.9111 0.7790 0.5462 0.6421
Std 0.0007 0.0131 0.0045 0.0058 0.0006 0.0036 0.0033 0.0024

(b) Fog only.

MULTICLASS BINARY

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Mean 0.8876 0.6543 0.4924 0.5440 0.9083 0.7668 0.5346 0.6300
Median 0.8877 0.6539 0.4920 0.5435 0.9083 0.7671 0.5343 0.6300
Std 0.0004 0.0049 0.0027 0.0031 0.0003 0.0022 0.0019 0.0014

(c) All the hosts.

Table 8.5: Evaluation results for NNs in scenario 3.

MULTICLASS BINARY

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Neural Network 1

Fog 0.8992 0.7375 0.5408 0.6055 0.9181 0.8775 0.7690 0.8098
Edge 0.8935 0.7056 0.4956 0.5559 0.9128 0.8694 0.7529 0.7951

Neural Network 2

Fog 0.8995 0.7346 0.5333 0.6007 0.9170 0.8739 0.7639 0.8050
Edge 0.8935 0.7387 0.4858 0.5491 0.9135 0.8681 0.7543 0.7959

Neural Network 3

Fog 0.8988 0.7312 0.5386 0.6059 0.9183 0.8816 0.7622 0.8058
Edge 0.8901 0.5221 0.4660 0.4830 0.9122 0.8544 0.7623 0.7981

Neural Network 4

Fog 0.8562 0.2141 0.2500 0.2306 0.8533 0.4267 0.5000 0.4604
Edge 0.8924 0.7140 0.4761 0.5433 0.8537 0.4269 0.5000 0.4605

71

Chapter 8

Table 8.6: Evaluation results for CNNs in scenario 3.

MULTICLASS BINARY

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Local Normalisation

Fog 0.9040 0.7151 0.5323 0.5936 0.9135 0.8685 0.8009 0.8333
Edge 0.9118 0.7730 0.5332 0.5749 0.9302 0.8893 0.8151 0.8464

Global Normalisation

Fog 0.9248 0.8067 0.6570 0.7177 0.9363 0.9084 0.8230 0.8584
Edge 0.9305 0.8178 0.6761 0.7330 0.9438 0.9169 0.8485 0.8781

Figure 8.4: Confusion matrix for the CPU fault prediction using the best-
performing model in scenario 3.

72

Results and Discussion

8.3 New Labels

When running the simulations, in order to get the fault intensity labels only the
number of phantom containers is considered. However, at this point, the number
of phantom containers is not the only factor that influences the fault intensity. Be-
cause in complex scenarios the containers have a large range of IPS to be treated,
the IPS that each phantom container is assigned to, is also a factor that influences
the fault intensity.

Therefore, a new dataset was generated in order to get that value. By plotting the
IPS of the phantom containers against the fault intensity, it is possible to see that,
there are faults of intensity 1 with a large IPS than some faults of intensity 2, and
even of intensity 3. This is shown in Figure 8.5.

(a) Scatter plot (b) Boxplot

Figure 8.5: Fault intensity for IPS faults in dataset from scenario 3.

Figure 8.6 shows the distribution of the IPS of the phantom containers. By previ-
ous analysis of the dataset it was seen that, for this simulation parameters, 79%
of the faults were of intensity 1, 19% of intensity 2, and 2% of intensity 3. The
vertical lines in the Figure 8.6 represent the 79% and 98% percentiles.

Therefore, the new labels were defined as follows:

• Normal behaviour: IPS of the faults is 0. It is the same as the previous label
0.

• Fault intensity 1: IPS of the phantom containers is below the 79% percentile.

• Fault intensity 2: IPS of the phantom containers is between the 79% and
98% percentiles.

• Fault intensity 3: IPS of the phantom containers is above the 98% percentile.

73

Chapter 8

Figure 8.6: Distribution of IPS of faults in dataset from scenario 3.

8.4 Final Results

The same models were trained and evaluated with the new dataset. Only the
multiclass problem was considered, as it is the one that changed when compared
to the previous dataset. Table 8.7 shows the results of the NNs.

The results show that the NNs were able to achieve better results when compared
to the previous version, achieving improvements of 2% in the F1-score for the fog
and 6% for the edge, however, the results are still not good and the improvement
is not that significant.

For the CNNs, the results are shown in Table 8.8.

Since the simulator was modified in order to also give the IPS of faults, and not
only the number of phantom containers, the regression problem was also ex-
plored. A RFR was trained and evaluated, due to its simplicity and fast training
time. The results are shown in Table 8.9.

Despite the bad results from the RFR, it opens the door to new approaches, like
the use of other regressors for fault prediction, which was not explored in this
work.

74

Results and Discussion

Table 8.7: Evaluation results for NNs in scenario 3 with the new labels.

Accuracy Precision Recall F1

Neural Network 1

Fog 0.9012 0.7266 0.5585 0.6208
Edge 0.8940 0.7116 0.5471 0.6066

Neural Network 2

Fog 0.8992 0.7601 0.5582 0.6268
Edge 0.8935 0.7106 0.5400 0.6012

Neural Network 3

Fog 0.8991 0.7160 0.5596 0.6188
Edge 0.8901 0.6513 0.5947 0.6136

Neural Network 4

Fog 0.8999 0.7423 0.5652 0.6295
Edge 0.8918 0.7063 0.5519 0.6101

Table 8.8: Evaluation results for CNNs in scenario 3 with the new labels.

Accuracy Precision Recall F1

Local Normalisation

Fog 0.9036 0.7145 0.5171 0.5782
Edge 0.9098 0.7418 0.5506 0.5965

Global Normalisation

Fog 0.9230 0.7548 0.7228 0.7322
Edge 0.9265 0.8159 0.6645 0.7267

8.5 Summary

This chapter presented the results of the experiments and discussed them.

The results show that the CNNs were able to achieve the best results, with an
F1-score of 70% for the multiclass problem for the CPU faults. For the CNNs, the
global normalisation approach was the one that performed the best. However,
the results are still not good enough.

The results also show that the RFR was not able to achieve good results for the
regression problem, but it opens the door to new approaches, like the use of other
regressors for fault prediction.

75

Chapter 8

Table 8.9: MSE results for RFR in scenario 3.

Test Train

Mean Median Std Mean Median Std

Edge 3971 3969 21 554 554 2
Fog 54086 54100 397 7554 7557 30
All 16844 16861 101 2352 2352 9

76

Chapter 9

Conclusion

This work has been focused on the development of a self-organising engine for
the Cloud-to-Edge continuum that can automate the fault management process.

A simulator was presented and modified to support the proposed solution. SFC
were implemented in order to simulate a flow of containers from the edge to the
cloud.

Failure detection and mitigation mechanisms were designed and implemented.
The failure detection mechanism was based on the CPU and RAM usage of the
hosts. The mitigation mechanism was based on the migration of containers to
replicas of the host.

The design and implementation of a fault injection mechanism were also presen-
ted. It was implemented in the simulator and can inject recurrent or cumulative
faults in the RAM or CPU of the hosts.

Three different scenarios were implemented in the simulator, each one with more
complexity than the previous one and closer to a real-world scenario.

The modified version is public and available in a public repository. With this
version of the simulator, there can be generated datasets for Cloud-to-Edge com-
puting scenarios.

The datasets generated from the implemented scenarios were used to train ML
models to predict faults. Three different types of classificators were trained, RFC,
NN and CNN. CNN presented the best results, predicting CPU failures with an
f1 score of around 90% for binary classification problem and 71% for multi-class
classification problem.

77

Chapter 9

Finally, a regressor model was trained to predict the number of IPS that the faults
are consuming. The regressor used was RFR which, besides presenting a high
mean squared error, opens the door to further exploration of regressor models
for fault prediction, especially the ones that take advantage of the time series
nature of the data.

9.1 Limitations

Throughout the development of this work, several limitations were found and
overcome.

The first limitation was the lack of datasets for fault management in Cloud-to-
Edge computing scenarios. There are some works that tackle the problem of fault
management in Cloud-to-Edge computing, but most of those datasets are not
publicly available. This problem was overcome by the development of a sim-
ulator that can generate datasets for Cloud-to-Edge computing scenarios. This
allowed the implementation of several scenarios and the generation of different
datasets for each one of them.

The second limitation was the lack of a simulator that could simulate a Cloud-to-
Edge computing scenario. COSCO was the chosen simulator but, despite being
able to simulate a Cloud-to-Edge computing scenario, it was not designed for
fault management. This limitation was overcome by modifying the simulator to
support all the necessary features for fault management. This took a lot of time
and effort but, in the end, it was possible to implement all the necessary features
and have an in-depth knowledge of the simulator.

Finally, the last limitation was the computational power needed to generate the
datasets and train the ML models. The simulator was not designed to be fast, and
it took a lot of time to generate the datasets. This problem was overcome by op-
timising the simulator and the generation of the datasets. Besides that, access to
new computational resources also helped to reduce the time needed to generate
the datasets and, mainly, to train the ML models by using Graphics Processing
Unit (GPU).

78

Conclusion

9.2 Future Work

Regarding the future work, there are several points that can be further explored.

The simulator was a huge part of this work and it can be further improved. Sev-
eral code optimisations can be done, like the use of thread pools to reduce the
time of generation of the datasets. The configuration of the simulator can also be
improved, transforming it into a more user-friendly tool.

Regarding the scenarios, they could be more complex. The SFC could be bidirec-
tional instead of unidirectional. It could also go to the sides, communicate with
hosts from the same layer, and not only up. Edge nodes could have more than
one fog parent. Closer nodes could share replicas therefore reducing the number
of replicas needed.

Finally, relating to the ML models. CNNs can be further explored for fault predic-
tion. The use of CNN for fault prediction presented the best results in this work.
Pretrained models could be used to improve the results and reduce training time.
Other time series models, like LSTM, could also be used.

The use of time series models for CPU and/or RAM usage forecasting could be
used to predict a failure and pre-migrate the containers in order to avoid the
failure.

There can be way more exploration of regressor models for fault prediction. The
use of regressor models for fault prediction was almost not explored in this work
and, in the final version, the simulator can give the number of IPS that the faults
are consuming. This value could be predicted with regression models.

Finally, the use of reinforcement learning for fault prediction could also be ex-
plored, not only for fault prediction but also for other problems like container
placement. The big advantage of having a simulator is that it can be used to train
reinforcement learning models and, since now the simulator is faster than before,
it can be used to train more complex models.

79

References

[1] Estefanía Coronado et al. ‘Zero Touch Management: A Survey of Network
Automation Solutions for 5G and 6G Networks’. In: IEEE Communications
Surveys & Tutorials 24.4 (2022), pp. 2535–2578. ISSN: 1553-877X. DOI: 10.110
9/COMST.2022.3212586.

[2] Shreshth Tuli et al. ‘COSCO: Container Orchestration Using Co-Simulation
and Gradient Based Optimization for Fog Computing Environments’. In:
IEEE Transactions on Parallel and Distributed Systems 33.1 (Jan. 2022), pp. 101–
116. ISSN: 1558-2183. DOI: 10.1109/TPDS.2021.3087349.

[3] Kehua Su, Jie Li and Hongbo Fu. ‘Smart city and the applications’. In: 2011
International Conference on Electronics, Communications and Control (ICECC).
Sept. 2011, pp. 1028–1031. DOI: 10.1109/ICECC.2011.6066743.

[4] Jayant Kumar Singh and Amit Kumar Goel. ‘Data Security Through Fog
Computing Paradigm Using IoT’. en. In: Proceedings of Academia-Industry
Consortium for Data Science. Ed. by Gaurav Gupta et al. Advances in Intel-
ligent Systems and Computing. Singapore: Springer Nature, 2022, pp. 95–
103. ISBN: 9789811668876. DOI: 10.1007/978-981-16-6887-6_9.

[5] ETSI. ETSI GS NFV 002 V1.1.1 (2013-10). Tech. rep. Accessed on 04/11/2022.
ETSI, Oct. 2013. URL: https://www.etsi.org/deliver/etsi_gs/nfv/001
_099/002/01.01.01_60/gs_nfv002v010101p.pdf.

[6] Raouf Boutaba et al. ‘A comprehensive survey on machine learning for net-
working: evolution, applications and research opportunities’. In: Journal of
Internet Services and Applications 9.1 (June 2018), p. 16. ISSN: 1869-0238. DOI:
10.1186/s13174-018-0087-2.

[7] Mazeiar Salehie and Ladan Tahvildari. ‘Self-adaptive software: Landscape
and research challenges’. In: ACM Transactions on Autonomous and Adaptive
Systems 4.2 (May 2009), 14:1–14:42. ISSN: 1556-4665. DOI: 10.1145/1516533
.1516538.

[8] Paul Robertson and Robert Laddaga. ‘Model Based Diagnosis and Con-
texts in Self Adaptive Software’. en. In: Self-star Properties in Complex In-
formation Systems. Ed. by Ozalp Babaoglu et al. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2005, pp. 112–127. ISBN: 978-3-540-
32013-5. DOI: 10.1007/11428589_8.

81

https://doi.org/10.1109/COMST.2022.3212586
https://doi.org/10.1109/COMST.2022.3212586
https://doi.org/10.1109/TPDS.2021.3087349
https://doi.org/10.1109/ICECC.2011.6066743
https://doi.org/10.1007/978-981-16-6887-6_9
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1007/11428589_8

Chapter 9

[9] Rogério de Lemos and José Luiz Fiadeiro. ‘An architectural support for self-
adaptive software for treating faults’. In: Proceedings of the first workshop on
Self-healing systems. WOSS ’02. New York, NY, USA: Association for Com-
puting Machinery, Nov. 2002, pp. 39–42. ISBN: 978-1-58113-609-8. DOI: 10.1
145/582128.582136. URL: https://doi.org/10.1145/582128.582136.

[10] Harald Psaier and Schahram Dustdar. ‘A survey on self-healing systems:
approaches and systems’. en. In: Computing 91.1 (Jan. 2011), pp. 43–73. ISSN:
1436-5057. DOI: 10.1007/s00607-010-0107-y.

[11] Debanjan Ghosh et al. ‘Self-healing systems — survey and synthesis’. en.
In: Decision Support Systems. Decision Support Systems in Emerging Eco-
nomies 42.4 (Jan. 2007), pp. 2164–2185. ISSN: 0167-9236. DOI: 10.1016/j.ds
s.2006.06.011.

[12] IBM. What is machine learning? en-us. Accessed on 04/01/2023. URL: https
://www.ibm.com/topics/machine-learning.

[13] IBM. en-us. Accessed on 05/02/2023. URL: https://www.ibm.com/topics
/supervised-learning.

[14] Corinna Cortes and Vladimir Vapnik. ‘Support-vector networks’. en. In:
Machine Learning 20.3 (Sept. 1995), pp. 273–297. ISSN: 1573-0565. DOI: 10
.1007/BF00994018.

[15] Chandradip Banerjee. ANOVA and Chi-Square. Accessed on 15/05/2023.
June 2021. URL: https://medium.com/@chandradip93/anova-and-chi-
square-aea693c4eb96.

[16] Zhiheng Zhong et al. ‘Machine Learning-based Orchestration of Contain-
ers: A Taxonomy and Future Directions’. In: ACM Computing Surveys 54.10s
(Sept. 2022), 217:1–217:35. ISSN: 0360-0300. DOI: 10.1145/3510415.

[17] Qingfeng Du, Tiandi Xie and Yu He. ‘Anomaly Detection and Diagnosis
for Container-Based Microservices with Performance Monitoring’. en. In:
Algorithms and Architectures for Parallel Processing. Ed. by Jaideep Vaidya and
Jin Li. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2018, pp. 560–572. ISBN: 978-3-030-05063-4. DOI: 10.1007/978-
3-030-05063-4_42.

[18] Tao Zhang, Kun Zhu and Ekram Hossain. ‘Data-Driven Machine Learn-
ing Techniques for Self-Healing in Cellular Wireless Networks: Challenges
and Solutions’. en. In: Intelligent Computing 2022 (Sept. 2022), pp. 1–8. ISSN:
2771-5892. DOI: 10.34133/2022/9758169.

[19] C.S. Hood and Chuanyi Ji. ‘Proactive network fault detection’. In: Proceed-
ings of INFOCOM ’97. Vol. 3. Apr. 1997, 1147–1155 vol.3. DOI: 10.1109/INF
COM.1997.631137.

82

https://doi.org/10.1145/582128.582136
https://doi.org/10.1145/582128.582136
https://doi.org/10.1145/582128.582136
https://doi.org/10.1007/s00607-010-0107-y
https://doi.org/10.1016/j.dss.2006.06.011
https://doi.org/10.1016/j.dss.2006.06.011
https://www.ibm.com/topics/machine-learning
https://www.ibm.com/topics/machine-learning
https://www.ibm.com/topics/supervised-learning
https://www.ibm.com/topics/supervised-learning
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://medium.com/@chandradip93/anova-and-chi-square-aea693c4eb96
https://medium.com/@chandradip93/anova-and-chi-square-aea693c4eb96
https://doi.org/10.1145/3510415
https://doi.org/10.1007/978-3-030-05063-4_42
https://doi.org/10.1007/978-3-030-05063-4_42
https://doi.org/10.34133/2022/9758169
https://doi.org/10.1109/INFCOM.1997.631137
https://doi.org/10.1109/INFCOM.1997.631137

References

[20] O.P. Kogeda, J.I. Agbinya and C.W. Omlin. ‘A Probabilistic Approach To
Faults Prediction in Cellular Networks’. In: International Conference on Net-
working, International Conference on Systems and International Conference on
Mobile Communications and Learning Technologies (ICNICONSMCL’06). Apr.
2006, pp. 130–130. DOI: 10.1109/ICNICONSMCL.2006.29.

[21] Okuthe Kogeda and Johnson Agbinya. Prediction of Faults in Cellular Net-
works Using Bayesian Network Model. UTS ePress, Jan. 2006. ISBN: 978-0-
9775200-0-8. URL: https://opus.lib.uts.edu.au/handle/10453/2943
.

[22] Jianguo Ding et al. ‘Predictive fault management in the dynamic environ-
ment of IP networks’. In: 2004 IEEE International Workshop on IP Operations
and Management. Oct. 2004, pp. 233–239. DOI: 10.1109/IPOM.2004.1547622.

[23] Yong Wang, Margaret Martonosi and Li-Shiuan Peh. ‘Predicting link qual-
ity using supervised learning in wireless sensor networks’. In: ACM SIG-
MOBILE Mobile Computing and Communications Review 11.3 (July 2007), pp. 71–
83. ISSN: 1559-1662. DOI: 10.1145/1317425.1317434.

[24] Xu Lu et al. ‘Using Hessian Locally Linear Embedding for autonomic fail-
ure prediction’. In: 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC). Dec. 2009, pp. 772–776. DOI: 10.1109/NABIC.2009.5
393880.

[25] Alessandro Pellegrini, Pierangelo Di Sanzo and Dimiter R. Avresky. ‘A Ma-
chine Learning-Based Framework for Building Application Failure Predic-
tion Models’. In: 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop. May 2015, pp. 1072–1081. DOI: 10.1109/IPDPSW.2015
.110.

[26] Zhilong Wang et al. ‘Failure prediction using machine learning and time
series in optical network’. EN. In: Optics Express 25.16 (Aug. 2017), pp. 18553–
18565. ISSN: 1094-4087. DOI: 10.1364/OE.25.018553.

[27] Yash Kumar, Hasan Farooq and Ali Imran. ‘Fault prediction and reliability
analysis in a real cellular network’. In: 2017 13th International Wireless Com-
munications and Mobile Computing Conference (IWCMC). June 2017, pp. 1090–
1095. DOI: 10.1109/IWCMC.2017.7986437.

[28] R.A. Maxion. ‘Anomaly detection for diagnosis’. In: [1990] Digest of Papers.
Fault-Tolerant Computing: 20th International Symposium. June 1990, pp. 20–
27. DOI: 10.1109/FTCS.1990.89362.

[29] Sudarshan Rao. ‘Operational Fault Detection in cellular wireless base-stations’.
In: IEEE Transactions on Network and Service Management 3.2 (Apr. 2006),
pp. 1–11. ISSN: 1932-4537. DOI: 10.1109/TNSM.2006.4798311.

[30] J.S. Baras et al. ‘Automated network fault management’. In: MILCOM 97
MILCOM 97 Proceedings. Vol. 3. Nov. 1997, 1244–1250 vol.3. DOI: 10.1109
/MILCOM.1997.644967.

83

https://doi.org/10.1109/ICNICONSMCL.2006.29
https://opus.lib.uts.edu.au/handle/10453/2943
https://opus.lib.uts.edu.au/handle/10453/2943
https://doi.org/10.1109/IPOM.2004.1547622
https://doi.org/10.1145/1317425.1317434
https://doi.org/10.1109/NABIC.2009.5393880
https://doi.org/10.1109/NABIC.2009.5393880
https://doi.org/10.1109/IPDPSW.2015.110
https://doi.org/10.1109/IPDPSW.2015.110
https://doi.org/10.1364/OE.25.018553
https://doi.org/10.1109/IWCMC.2017.7986437
https://doi.org/10.1109/FTCS.1990.89362
https://doi.org/10.1109/TNSM.2006.4798311
https://doi.org/10.1109/MILCOM.1997.644967
https://doi.org/10.1109/MILCOM.1997.644967

Chapter 9

[31] Karwan Qader, Mo Adda and Mouhammd Al-Kasassbeh. ‘Comparative
Analysis of Clustering Techniques in Network Traffic Faults Classification’.
en. In: International Journal of Innovative Research in Computer and Communic-
ation Engineering 5.4 (2007), p. 13.

[32] Azzam I. Moustapha and Rastko R. Selmic. ‘Wireless Sensor Network Mod-
eling Using Modified Recurrent Neural Networks: Application to Fault De-
tection’. In: IEEE Transactions on Instrumentation and Measurement 57.5 (May
2008), pp. 981–988. ISSN: 1557-9662. DOI: 10.1109/TIM.2007.913803.

[33] H. Hajji. ‘Statistical analysis of network traffic for adaptive faults detection’.
In: IEEE Transactions on Neural Networks 16.5 (Sept. 2005), pp. 1053–1063.
ISSN: 1941-0093. DOI: 10.1109/TNN.2005.853414.

[34] Umair Sajid Hashmi, Arsalan Darbandi and Ali Imran. ‘Enabling proact-
ive self-healing by data mining network failure logs’. en. In: 2017 Interna-
tional Conference on Computing, Networking and Communications (ICNC). Sil-
icon Valley, CA, USA: IEEE, Jan. 2017, pp. 511–517. ISBN: 978-1-5090-4588-4.
DOI: 10.1109/ICCNC.2017.7876181. URL: http://ieeexplore.ieee.org/d
ocument/7876181/.

[35] Karamjeet Kaur, Veenu Mangat and Krishan Kumar. ‘A comprehensive sur-
vey of service function chain provisioning approaches in SDN and NFV ar-
chitecture’. en. In: Computer Science Review 38 (Nov. 2020), p. 100298. ISSN:
1574-0137. DOI: 10.1016/j.cosrev.2020.100298.

[36] Sandra Herker et al. ‘Data-Center Architecture Impacts on Virtualized Net-
work Functions Service Chain Embedding with High Availability Require-
ments’. In: 2015 IEEE Globecom Workshops (GC Wkshps). Dec. 2015, pp. 1–7.
DOI: 10.1109/GLOCOMW.2015.7414158.

[37] Ahmed M. Medhat et al. ‘Resilient orchestration of Service Functions Chains
in a NFV environment’. In: 2016 IEEE Conference on Network Function Virtu-
alization and Software Defined Networks (NFV-SDN). Nov. 2016, pp. 7–12. DOI:
10.1109/NFV-SDN.2016.7919468.

[38] Karthik Karra and Krishna M. Sivalingam. ‘Providing Resiliency for Ser-
vice Function Chaining in NFV systems using a SDN-based approach’. In:
2018 Twenty Fourth National Conference on Communications (NCC). Feb. 2018,
pp. 1–6. DOI: 10.1109/NCC.2018.8600121.

[39] Isaac Lera, Carlos Guerrero and Carlos Juiz. ‘YAFS: A Simulator for IoT
Scenarios in Fog Computing’. In: IEEE Access 7 (2019), pp. 91745–91758.
ISSN: 2169-3536. DOI: 10.1109/ACCESS.2019.2927895.

[40] rishabv90. B-series burstable - Azure Virtual Machines. en-us. Accessed on
24/07/2023. Sept. 2022. URL: https://learn.microsoft.com/en-us/azure
/virtual-machines/sizes-b-series-burstable (visited on 25/07/2023).

84

https://doi.org/10.1109/TIM.2007.913803
https://doi.org/10.1109/TNN.2005.853414
https://doi.org/10.1109/ICCNC.2017.7876181
http://ieeexplore.ieee.org/document/7876181/
http://ieeexplore.ieee.org/document/7876181/
https://doi.org/10.1016/j.cosrev.2020.100298
https://doi.org/10.1109/GLOCOMW.2015.7414158
https://doi.org/10.1109/NFV-SDN.2016.7919468
https://doi.org/10.1109/NCC.2018.8600121
https://doi.org/10.1109/ACCESS.2019.2927895
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable

References

[41] Corey Sanders. Introducing B-Series, our new burstable VM size | Azure Blog
| Microsoft Azure. en-US. Sept. 2017. URL: https://azure.microsoft.com
/en-us/blog/introducing-b-series-our-new-burstable-vm-size/.

[42] Accessed on 15/08/2023. URL: https://archive.vn/20130205075133/htt
p://www.tomshardware.com/charts/cpu-charts-2004/Sandra-CPU-Dhry
stone,449.html.

[43] Python. Accessed on 24/07/2023. July 2023. URL: https://github.com/im
perial-qore/COSCO.

[44] Siqi Shen, Vincent van Beek and Alexandra Iosup. ‘Statistical characteriza-
tion of business-critical workloads hosted in cloud datacenters’. In: Proceed-
ings of the 15th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing. CCGRID ’15. Shenzhen, China: IEEE Press, 2015, pp. 465–474.
ISBN: 978-1-4799-8006-2. DOI: 10.1109/CCGrid.2015.60. URL: https://dl
.acm.org/doi/10.1109/CCGrid.2015.60.

[45] Accessed on 16/08/2023. URL: http://gwa.ewi.tudelft.nl/datasets/gw
a-t-12-bitbrains.

[46] Eli Cortez et al. ‘Resource Central: Understanding and Predicting Work-
loads for Improved Resource Management in Large Cloud Platforms’. en.
In: Proceedings of the 26th Symposium on Operating Systems Principles. Shang-
hai China: ACM, Oct. 2017, pp. 153–167. ISBN: 978-1-4503-5085-3. DOI: 10.1
145/3132747.3132772. URL: https://dl.acm.org/doi/10.1145/3132747
.3132772.

[47] Accessed on 16/08/2023. Aug. 2023. URL: https://github.com/Azure/Az
urePublicDataset.

[48] Accessed on 17/08/2023. URL: https://manpages.ubuntu.com/manpages
/xenial/man1/stress-ng.1.html.

[49] Qingfeng Du et al. ‘An Approach of Collecting Performance Anomaly Data-
set for NFV Infrastructure’. en. In: Algorithms and Architectures for Parallel
Processing. Ed. by Jaideep Vaidya and Jin Li. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2018, pp. 59–71. ISBN:
978-3-030-05057-3. DOI: 10.1007/978-3-030-05057-3_5.

[50] Carla Sauvanaud et al. ‘Anomaly detection and diagnosis for cloud ser-
vices: Practical experiments and lessons learned’. In: Journal of Systems and
Software 139 (May 2018), pp. 84–106. ISSN: 0164-1212. DOI: 10.1016/j.jss
.2018.01.039.

[51] Carla Sauvanaud et al. ‘Anomaly Detection and Root Cause Localization in
Virtual Network Functions’. In: 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE). Oct. 2016, pp. 196–206. DOI: 10.110
9/ISSRE.2016.32.

85

https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://archive.vn/20130205075133/http://www.tomshardware.com/charts/cpu-charts-2004/Sandra-CPU-Dhrystone,449.html
https://archive.vn/20130205075133/http://www.tomshardware.com/charts/cpu-charts-2004/Sandra-CPU-Dhrystone,449.html
https://archive.vn/20130205075133/http://www.tomshardware.com/charts/cpu-charts-2004/Sandra-CPU-Dhrystone,449.html
https://github.com/imperial-qore/COSCO
https://github.com/imperial-qore/COSCO
https://doi.org/10.1109/CCGrid.2015.60
https://dl.acm.org/doi/10.1109/CCGrid.2015.60
https://dl.acm.org/doi/10.1109/CCGrid.2015.60
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://dl.acm.org/doi/10.1145/3132747.3132772
https://dl.acm.org/doi/10.1145/3132747.3132772
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://manpages.ubuntu.com/manpages/xenial/man1/stress-ng.1.html
https://manpages.ubuntu.com/manpages/xenial/man1/stress-ng.1.html
https://doi.org/10.1007/978-3-030-05057-3_5
https://doi.org/10.1016/j.jss.2018.01.039
https://doi.org/10.1016/j.jss.2018.01.039
https://doi.org/10.1109/ISSRE.2016.32
https://doi.org/10.1109/ISSRE.2016.32

[52] Mbarka Soualhia, Chunyan Fu and Foutse Khomh. ‘Infrastructure fault de-
tection and prediction in edge cloud environments’. In: Proceedings of the
4th ACM/IEEE Symposium on Edge Computing. SEC ’19. New York, NY, USA:
Association for Computing Machinery, Nov. 2019, pp. 222–235. ISBN: 978-
1-4503-6733-2. DOI: 10.1145/3318216.3363305. URL: https://doi.org/10
.1145/3318216.3363305.

86

https://doi.org/10.1145/3318216.3363305
https://doi.org/10.1145/3318216.3363305
https://doi.org/10.1145/3318216.3363305

Appendices

87

Appendix A

Exploratory Data Analysis

A.1 Scenario 1: Linear Chaining

Table A.1: Description of the dataset for scenario 1.

CPU Number of Base IPS IPS Apparent Fault
usage containers IPS available cap IPS intensity

count 90090 90090 90090 90090 90090 90090 90090
mean 17.6 7.3 755.2 8659.0 9414.0 1431.0 0.1
std 8.1 2.5 406.0 4829.0 5019.0 686.7 0.4
min 0.0 0.0 0.0 2249.4 4029.0 0.0 0.0
25% 11.8 6.0 458.9 3675.2 4029.0 924.0 0.0
50% 16.2 7.0 682.4 7397.4 8102.0 1304.0 0.0
75% 22.2 9.0 980.0 14807.9 16111.0 1825.0 0.0
max 65.1 20.0 3440.0 16111.0 16111.0 5678.0 3.0

(a) CPU metrics.

RAM Number of RAM Available RAM Fault
usage containers size read write size read write intensity

count 90090 90090 90090 90090 90090 90090 90090 90090 90090
mean 4. 7.3 506.5 1.4 1.1 18105.2 368.1 256.1 0.1
std 3.7 2.5 502.9 4.8 4.6 12171.2 8.2 43.1 0.4
min 0.0 0.0 0.0 0.0 0.0 2852.3 290.0 197.1 0.0
25% 1.2 6.0 186.8 0.0 0.0 4129.3 360.0 200.0 0.0
50% 2.9 7.0 333.4 0.0 0.0 16799.5 371.9 266.7 0.0
75% 5.7 9.0 604.7 0.2 0.2 33291.6 375.5 304.7 0.0
max 33.6 20.0 4966.6 74.0 69.6 34360.0 376.5s 305.0 3.0

(b) RAM metrics.

89

Appendix A

Figure A.1: Pairplot of the RAM metrics collected from the hosts in scenario 1.

90

Exploratory Data Analysis

Figure A.2: Correlation matrix of the RAM metrics collected from the hosts in
scenario 1.

91

Appendix A

A.2 Scenario 2: Balanced Fixed Tree

Table A.2: Description of the balanced dataset for scenario 2.

CPU Number of Base IPS IPS Apparent Fault
usage containers IPS available cap IPS intensity

count 210210 210210 210210 210210 210210 210210 210210
mean 36.3 12.4 2613.2 10721.5 13334.7 5730.4 1.5
std 14.3 8.0 3694.1 10307.5 13603.2 7473.2 1.1
min 0.0 0.0 0.0 803.0 2049.0 0.0 0.0
25% 25.8 7.0 309.6 2513.4 2848.0 862.0 0.0
50% 34.9 10.0 526.4 3433.3 3782.5 1317.0 1.0
75% 45.8 15.0 3356.7 18182.8 21299.0 7691.0 2.0
max 100.0 52.0 22736.8 40960.0 40960.0 39800.0 3.0

(a) CPU metrics.

RAM Number of RAM Available RAM Fault
usage containers size read write size read write intensity

count 210210 210210 210210 210210 210210 210210 210210 210210 210210
mean 7.1 12.4 1696.4 3.0 1.2 23618.6 366.2 238.3 1.5
std 4.2 8.0 2651.7 9.1 3.8 26449.2 11.0 46.1 1.1
min 0.0 0.0 0.0 0.0 0.0 1212.8 231.2 188.0 0.0
25% 4.0 7.0 200.6 0.0 0.0 2654.0 359.9 200.0 0.0
50% 6.5 10.0 360.5 0.1 0.1 3624.2 371.9 200.0 1.0
75% 9.5 15.0 2001.0 0.6 0.4 42049.6 372.0 299.8 2.0
max 43.8 52.0 19598.2 145.4 78.7 81920.0 376.5 305.0 3.0

(b) RAM metrics.

92

Exploratory Data Analysis

Figure A.3: Pairplot of the RAM metrics collected from the hosts in scenario 2.

93

Appendix A

Figure A.4: Correlation matrix of the CPU metrics collected from the hosts in
scenario 1.

94

Exploratory Data Analysis

Figure A.5: Correlation matrix of the RAM metrics collected from the hosts in
scenario 1.

95

Appendix A

Table A.3: Feature importance for CPU faults in scenario 2.

Select K Best Feature Importance
ANOVA CHI2 Extra Tree Classifier

cpu 20881.14 2.69e+05 0.210
apparentips 678.92 1.96e+07 0.245
numcontainers 2.24 3.46e+01 0.145
baseips 1.62 2.53e+04 0.144
ipscap 0.37 1.55e+04 0.093
ipsavailable 0.30 9.03e+03 0.142

96

Appendix B

AI Models

1 ## NN 1 - smaller
2 model1 = tf.keras.models.Sequential(
3 [
4 tf.keras.layers.Dense(
5 64, activation="relu", input_shape=(X_train.shape[1],)
6), # 6 features
7 tf.keras.layers.Dense(64, activation="relu"),
8 tf.keras.layers.Dense(
9 len(y.unique()), activation="softmax"

10), # 4 or 2 classes
11]
12)

13 ## NN 2 - bigger
14 model2 = tf.keras.models.Sequential(
15 [
16 tf.keras.layers.Dense(
17 32, activation="relu", input_shape=(X_train.shape[1],)
18), # 6 features
19 tf.keras.layers.Dense(64, activation="relu"),
20 tf.keras.layers.Dense(128, activation="relu"),
21 tf.keras.layers.Dense(256, activation="relu"),
22 tf.keras.layers.Dense(256, activation="relu"),
23 tf.keras.layers.Dense(32, activation="relu"),
24 tf.keras.layers.Dense(
25 len(y.unique()), activation="softmax"
26), # 4 or 2 classes
27]
28)

97

Chapter 9

29 ## NN 3 - even larger
30 model3 = tf.keras.models.Sequential(
31 [tf.keras.layers.Dense(
32 16*6, activation="relu", input_shape=(X_train.shape[1],)
33), # 6 features
34 tf.keras.layers.BatchNormalization(),
35 tf.keras.layers.Dense(64*6, activation="relu"),
36 tf.keras.layers.BatchNormalization(),
37 tf.keras.layers.Dense(128*6, activation="relu"),
38 tf.keras.layers.BatchNormalization(),
39 tf.keras.layers.Dense(32*6, activation="relu"),
40 tf.keras.layers.BatchNormalization(),
41 tf.keras.layers.Dense(64, activation="relu"),
42 tf.keras.layers.Dense(16, activation="relu"),
43 tf.keras.layers.Dropout(0.2),
44 tf.keras.layers.Dense(
45 len(y.unique()), activation="softmax"
46), # 4 or 2 classes
47]
48)
49 ## NN 4 - the largest
50 model4 = tf.keras.models.Sequential(
51 [tf.keras.layers.Dense(
52 32, activation="relu", input_shape=(X_train.shape[1],)
53), # 6 features
54 tf.keras.layers.Dense(64, activation="relu"),
55 tf.keras.layers.Dense(128, activation="relu"),
56 tf.keras.layers.Dense(256, activation="relu"),
57 tf.keras.layers.Dense(256, activation="relu"),
58 tf.keras.layers.Dense(512, activation="relu"),
59 tf.keras.layers.Dense(512, activation="relu"),
60 tf.keras.layers.Dense(1024, activation="relu"),
61 tf.keras.layers.Dense(1024, activation="relu"),
62 tf.keras.layers.Dense(256, activation="relu"),
63 tf.keras.layers.Dense(64, activation="relu"),
64 tf.keras.layers.Dense(16, activation="relu"),
65 tf.keras.layers.Dense(
66 len(y.unique()), activation="softmax"
67), # 4 or 2 classes
68]
69)

Listing B.1: Architecture of the Neural Networks used in scenario 3.

98

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Contributions
	Document Structure

	Background
	Service Function Chains
	Fault Management
	Fault Prediction
	Fault Detection
	Self-Healing

	Machine Learning
	Feature Reduction, Selection and Importance
	Summary

	State of the Art
	Fault Management
	Fault Prediction
	Fault Detection

	Service Function Chain
	Analysis
	Summary

	Proposed Solution
	Proposed Framework
	Experiments
	Summary

	Simulation Methodology
	Simulator
	Hosts Configuration
	Workload Configuration
	Adding SFC support
	Fault Injection
	Failure Detection and Mitigation
	Additional Modifications
	Summary

	Simulation Scenarios and Dataset Generation
	Scenario 1: Linear Chaining
	Scenario 2: Balanced Fixed Tree
	Scenario 3: Imbalanced Dynamic Tree
	Summary

	AI Models, Configuration and Data Preprocessing
	Random Forest
	Neural Networks
	Convolutional Neural Networks
	Evaluation Metrics
	Summary

	Results and Discussion
	RFC results
	NN and CNN results
	New Labels
	Final Results
	Summary

	Conclusion
	Limitations
	Future Work

	References
	Appendix Exploratory Data Analysis
	Scenario 1: Linear Chaining
	Scenario 2: Balanced Fixed Tree

	Appendix AI Models

