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Introduction
This project aims at researching and developing an Intrusion Detection
System (IDS) for critical infrastructure, such as Smart Grids, which
impacts energy distribution and production. Smart Grids (SGs) [1] are
modernised electricity networks that use advanced digital technology
to improve the power grid system’s efficiency, reliability, and
sustainability. This can include the integration of renewable energy
sources, the use of advanced sensors and control systems, and the
ability to support two-way communication and power flow [2]. The
SGs are composed of substations disseminated among the whole
infrastructure controlling an autonomous geographical area. Inside
the substation, their servers have a hierarchical structure for
processing data from sensors (IoT devices) in the grid.

Proposed Approach
Due to the heterogenicity of the data, applying common Machine
Learning (ML) algorithms to detect intrusions can lead to poor
classification results. Federated Learning (FL) [3] can solve this issue
since it enables a distributed training of the data among different
nodes. The FL process is shown in Figure 1. First, a central server
initialises the client’s local models. Secondly, the clients update their
local models with their data. Finally, the central server aggregates the
client’s local models.

However, anomaly detec;on problems, such as detecLng aMacks in a
system, are affected by imbalanced data. This means that the samples
used to train ML models have a kind o class more represented than
others (e. g. more examples of normal scenarios than aMacks). This
leads to poor performance of the models. A soluLon is to classify the
minority class points (Fig. 2) into four categories: Safe, Borderline,
Rare, and Outliers [4]. This typology is computed with the 5-Nearest
Neighbors (5NN) belonging to the same class to the point. This
classificaLon makes it possible to rebalance the data with more
informaLve examples using SMOTE algorithm [5].
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Figure 1: Federated Learning architecture

Figure 2: MDS visualisa5on of the Ecoli dataset before and a9er classifying the minority class

In Figure 3, at the boMom level, the Local Nodes (LNs) are fed with
data sent via MQTT protocol by the sensors. The data is aggregated
in their Central Local Nodes (CLNs) at the second level. Finally, at
the top level, the Central Node (CN) aggregates the data from the
CLNs. The results of the typology of the points are sent to a GUI
that shows the percentage for each node.

Conclusion
Considering the current evoluLon of the typology, the system can
decide to train the classifier with its new data to achieve a beMer
performance in detecLng aMacks. Since the data generated from
the IoT devices are network logs with a temporality component,
using Time-Series Classifiers (TSC) is more adequate to solve this
problem.

With our framework, a three-level architecture can be built
corresponding to the hierarchy of the servers in the substaLons.
The system monitors in real-;me the evolu;on of the typology of
the points in the minority class.

Figure 3: Real-5me visualiza5on of the three-level FL system 
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