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Abstract—In the domain of Industrial Automation and Control
Systems (IACS), security was traditionally downplayed to a
certain extent, as it was originally deemed an exclusive concern of
Information and Communications Technology (ICT) systems. The
myth of the air-gap, as well as other preconceived notions about
implicit IACS security, constituted dangerous fallacies that were
debunked once successful attacks become known. Ultimately,
the industry started shifting away from this dangerous mindset,
discussing how to properly secure those systems. In many ways,
IACS security should not be treated differently from modern
ICT security. For sure, IACS have distinct characteristics, assets,
protocols and even priorities that should be considered – but
security should never be an optional concern.

In this publication, we present the main results of a PhD
dissertation that proposes a holistic and data-driven framework
capable of leveraging distinct techniques to increase situational
awareness and provide continuous and near real-time monitoring
of IACS. For such purposes, it proposes an evolution of the
Security Information and Event Management (SIEM) concept,
geared towards providing a unified security data monitoring
solution by leveraging recent advances in the field of real-time
Big Data analytics. In the same way, the most recent machine-
learning-based anomaly-detection techniques (which are becom-
ing increasingly prominent in the cybersecurity field) are also
analyzed and studied to understand their benefits for developing
and advancing IACS cyber-intrusion detection processes.

Index Terms—Industrial Automation and Control Systems; Cy-
bersecurity; Intrusion Detection; Real-Time Big Data Analytics;
SCADA Networks.

I. INTRODUCTION

Industrial Automation and Control Systems (IACS) [1] [2]
differ from Information Technology (IT) systems. A successful
cyber-attack against mission-critical IACS can lead to massive
financial losses, physical equipment damage or even human
safety hazards. The cybersecurity of IACS, sometimes over-
looked in the past, is now a paramount matter. But this is no
easy task, for reasons such as the widespread usage of legacy
technologies and protocols or the number of legacy systems
still in use without proper security support, often operating
beyond the equipment’s End-Of-Life support status.

IACS traditionally relied on air-gapped Supervisory Con-
trol And Data Acquisition (SCADA) systems using domain-
specific protocols and technologies. The increased intercon-
nection paths, the Operational Technology (OT)/IT conver-
gence and the gradual adoption of Ethernet- and TCP/IP-based
networks in IACS faded the perimeter lines between what was
assumed to be secure and the outside world. This is aggravated
by the fact that most of the SCADA communication protocols

still lack proper security enforcing mechanisms, despite the
gradual introduction of some security support.

Contrary to what could be expected, the support for classical
tools such as rule-based Network Intrusion Detection System
(NIDS) for SCADA is limited. Even the most popular NIDS
are often limited to ad-hoc rules for SCADA traffic, lacking
the appropriate stateful/stateless decoding capabilities and
richer signature sets for the different protocols. Anomaly de-
tection based on Machine-Learning (ML) techniques, increas-
ingly prominent in other domains, is also expected to bring
numerous benefits to IACS, including efficient classification
of large amounts of heterogeneous data to spot anomalies.
Nevertheless, they are still presented in the literature as
theoretical and isolated works focused mostly on proposing
and evaluating specific algorithms.

This gap creates the opportunity to introduce evolved SIEM
systems as a good match for monitoring and integrating a
wide range of additional security mechanisms. More than
a single NIDS or a single ML-based anomaly detection
algorithm, SIEM systems are expected to bring a global,
aggregated and valuable insight into the security state of
the infrastructure. Nevertheless, the applicability of SIEMs in
SCADA environments is still in its early stages. There are
still several open challenges, such as the data formats, integra-
tion/interoperability between components or overall platform
orchestration, which need to be addressed to achieve practical
and complete solutions.

A. Research Question and Contributions

Considering the previously identified problems, the thesis
hereby summarized [3] addresses the following research ques-
tion: How to improve the security of next-generation IACS
through a holistic data-driven framework? This work led to
several contributions, of which we emphasize the following:

• Security analysis of SCADA protocols in the scope of
practical attack scenarios. Among other specific results,
we point out the definition and exploration of practical
attack scenarios, often from the attackers’ perspective
(less used in the literature) and based on testbeds rep-
resentative of real IACS operated by energy utilities.
Besides some initial work focused on the well-known
Modbus protocol [4], a detailed security analysis of the
PCOM [5] protocol was also conducted. This protocol
was chosen as an example of various popular SCADA
protocols used by the industry but not extensively studied



from a security point of view. This was validated by
leveraging the CockpitCI and ATENA testbeds to create
high-fidelity scenarios [6]–[8]. Moreover, this effort also
resulted in multiple contributions to popular open-source
tools, such as the Snort IDS [9], Wireshark [10]–[12],
Scapy [13], NMAP [14] and Metasploit [15], [16], as
well as a publicly available dataset [17].

• Conceptualization and design of a holistic data-driven
framework for intrusion and anomaly detection in IACS
scenarios. Leveraging the SIEM and lambda architec-
ture concepts, this conceptualization and design work
addresses challenges such as the integration of multi-
ple, dispersed and heterogeneous data sources, platform
elasticity and scalability (for being able to ingest large
amounts of dispersed data while keeping time-boundaries
for data processing within required levels, for streaming
and batch processing), and to flexibly accommodate and
combine different anomaly detection mechanisms in a
neutral fashion [18]–[20].

• Integration and evaluation of different mechanisms for
classifying network traffic. For demonstration and valida-
tion purposes, several network traffic classification mech-
anisms were integrated into the framework and evaluated,
considering various representative scenarios, both for near
real-time detection (based on stream processing) and for
batch processing [20].

The rest of this paper is organised as follows: Section II de-
scribes the performed exploratory analysis of different SCADA
protocols, tools and attack scenarios; Section III introduces the
proposed holistic Intrusion and Anomaly Detection System
(IADS) framework; Section IV addresses the event streaming
and data analytics capabilities, two key building blocks of the
proposed framework; and Section V concludes the paper.

II. EXPLORATORY ANALYSIS OF THE SECURITY OF
SCADA PROTOCOLS

In the scope of IACS, network communication protocols
are one the most valuable data sources for security purposes.
They are used, for instance, to monitor and actively control
components from a local/remote site or to continuously poll
the values of an autonomous physical process. In that sense,
our work started by researching network-based attack scenar-
ios using the Modbus protocol [4]. Rather than exclusively
studying its widely known vulnerabilities, Modbus was anal-
ysed from a different perspective: how SCADA systems can
be effectively exploited from a practical standpoint. These
experiments, conducted from the attacker’s perspective, al-
lowed us to dig into the technical details of involved protocols
and, ultimately, to understand how to design and implement
appropriate countermeasures. A grey box penetration testing
approach was used, narrowing the experiments to the existing
SCADA assets and vulnerabilities rather than blindly exploring
other types of attack vectors. An incremental three-stage attack
strategy was devised, with the following phases: monitor
the process values (to gain knowledge about the nature and
characteristics of the controlled process), change them without

being noticed in the SCADA Human-Machine Interface (HMI)
consoles and, finally, induce service disruption. Such strategy,
primarily focused on network communications, also covers
a large subset of SCADA specific cyber-attack scenarios –
including, amongst others, TCP/IP network scans, Modbus
specific scans, different variants of Denial of Service (DoS)
attacks, and a SCADA-specific Man-in-the-middle (MitM)
attack specifically customized for this process environment.

Next, we devoted efforts towards analysing the security of
the PCOM protocol [5]. PCOM is one of the many SCADA
protocols used by the industry. It was used in our partner’s
testbed (which reproduced various smartgrid scenarios) for
ancillary functions, and accidentally discovered in network
traffic captures during the exploratory work conducted from
the attacker’s perspective. After discovering PCOM traffic, we
realised there was no publicly known research about the secu-
rity of this SCADA protocol. Furthermore, even Wireshark, for
instance, lacked support for PCOM, making it difficult even
to understand what was transmitted over the network. Taking
all of this into account, we decided to conduct an extensive
analysis of PCOM’s security, as an example of the work that
needs to be performed for a large number of still unaddressed
SCADA protocols.

In that scope, we started by developing a Wireshark
PCOM/TCP dissector. This dissector can interpret PCOM/TCP
headers, as well as the header structure for both modes of
PCOM (PCOM/ASCII and PCOM/Binary) and interpret over
25 PCOM command codes. The code of this dissector has been
integrated into the upstream Wireshark repository [10] [11]
[12]. Developing this built-in dissector for Wireshark provided
an interface to visualize PCOM messages’ flows, structure and
content.

Next, we explored different use cases in the form of cyber-
attacks using PCOM, which led to the following open-source
contributions: two NMAP scans scripts for collecting PLC data
using PCOM and CIP protocols [14], [21]; two Metasploit
modules to implement several proof-of-concept attacks and to
test PCOM Snort rules [15], [16]; a SCAPY layer to decode,
manipulate and craft PCOM network packets [13]; and a
Snort Ruleset which adds PCOM signature-based detection
capabilities to Snort [9] and can be used to detect and limit
unwanted network communications. Moreover, a PCOM traffic
dataset was also made publicly available, to support PCOM
protocol analysis efforts and tool development processes [17].

Like other contemporary SCADA protocols, it was found
that PCOM lacks security features such as confidentiality or
integrity. Nevertheless, despite the importance of such issues,
it must be clearly stated that PCOM is no worse than its
contemporary counterparts.

III. A HOLISTIC INTRUSION AND ANOMALY DETECTION
SYSTEM FOR IACS

After the aforementioned exploratory analysis of SCADA
protocols, we focused on evolving the way security monitoring
is performed in IACS environments.



In the last years, IACS security has been extensively dis-
cussed [20], [22]–[26], and security practitioners have been
rather vocal about its design flaws. Moreover, there is now
extensive literature devoted to the (in-)security of SCADA
communication protocols, but it clusters around a small subset
of the most used and well-known protocols. The security en-
forcing mechanisms of many other protocols still lack research
and validation, especially for closed or poorly documented
protocols.

Most of the reviewed literature on anomaly detection using
ML-based techniques focuses on the network or process-
related features (cf. [3], Chapter 2). Still, other potentially
relevant features, such as diversified log sources and host-
based events, are commonly ignored, therefore missing an im-
portant opportunity to develop a more comprehensive approach
covering a broader spectrum of attacks. Another overlooked
aspect of surveyed literature is that as we move towards a Big
Data problem, it is also critical that the chosen approaches
can fit into scalable, distributed and parallel computation
environments.

After analysing multiple approaches, techniques and frame-
works for Complex Event Processing and Big-Data, we con-
ceived a domain-specific IADS. The proposed framework was
built upon the idea of having an evolved Big Data-like SIEM
system capable of detecting in (near) real-time the occurrence
of cyber-physical attacks in complex IACS environments. In
contrast to other works, this research focused on having a
holistic framework capable of supporting different scenarios
and techniques, inspired by the Lambda Architecture [18].

This constitutes a departure from our first approach towards
the problem, where we devised a Defense-in-Depth (DiD)
detection layer based on the idea of monitoring a single
infrastructure [6]. Instead, we evolved towards an IADS de-
tection layer [20] designed from scratch to cope with highly
distributed, capillary and heterogeneous IACS, such as modern
smartgrids and industry 4.0 infrastructures, leveraging the
integration of open-source tools to create a Big-data oriented
solution. Figure 1 provides an overview of the proposed
architecture.

The proposed IADS uses a multi-layer approach, including
the two key functional capabilities which were more exten-
sively addressed in our research, namely: Stream Processing,
which is provided by the messaging system and the domain
processors; and Data Analytics, implemented within the Big
Data-like SIEM. Figure 2 illustrates how these two functional
capabilities relate.

Stream Processing is ensured by multiple domain processors
per domain. Each one, designed as a lightweight event-driven
streaming processing task, has its own topology (i.e. a chain
of small processing steps). Multiple domain processors and
individual tasks can also be composed into complex and per-
domain processing schemes. For instance, a chain of small
domain processors where the output of each one is processed
by the next, thus enabling large scale event processing.

Data Analytics capabilities, implemented within the Big
Data-like SIEM, are used to run different anomaly detection
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Fig. 1. Intrusion and Anomaly Detection System architecture [19]

mechanisms (i.e., ML-based pipelines). Each pipeline com-
prises a set of steps, from feature extraction and transforma-
tion, up to the actual computation of the probability of the
occurrence of a cyber-attack based on previously trained ML-
models. Such a generic computation framework is expected to
increase overall efficacy in the intrusion detection process and
support the handling of different types of cyber-security issues
(e.g. computing-intensive algorithms, global deviant patterns,
cross-domain incidents, network-based attacks, and physical-
based attacks hidden from the network).
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Fig. 2. Stream processing and Data Analytics layers [3].

The proposed framework considers the following principles
(cf. [3], Chapter 3): Fault-Tolerance; Effectiveness and Effi-
ciency; Scalability; Flexibility; Security; Distributed compu-
tation, messaging and storage; Node redundancy and strong
processing semantics; Multiple detection and analytics tech-
niques; Stream and Batch Processing. As opposed to the
majority of the surveyed research on IACS security, mainly
narrowed to theoretical mechanisms or specific algorithms, the



proposed approach widens the approaches towards effective
strategies to materialize and combine different components,
mechanisms and tools in the form of a highly flexible and
scalable framework.

IV. EVENT STREAMING AND DATA ANALYTICS

Event streaming, one of the core modules of the pro-
posed framework, fulfils two main purposes: (1) to pro-
vide an efficient, distributed and decoupled mechanism for
inter-component communication with exactly-once process-
ing guarantees; and (2), to provide domain-level processing
capabilities. The idea is that different (and heterogeneous)
security probes can leverage the event streaming layer to push
their outputs and evidence (i.e. events) to a highly flexible
messaging system.

Taking the inspiration from Intrusion Detection Message
Exchange Format (IDMEF) [27], a custom datamodel was
specifically devised for representing generic events (i.e. not
only a security event but also events such as telemetry data).
Such datamodel is intended to avoid the complexity of other
existing formats and fit into the increasingly demanding (Big
Data) IACS environments.

Apache Kafka [28] was used to implement the proposed
messaging system, since it is a distributed messaging system
capable of achieving high message throughput without sacri-
ficing latency – potentially supporting millions of messages
per second, as required by larger IACS.

The proposed approach is able to keep up with a substantial
number of security probes, as it was designed to scale as
needed. Multiple probes may report the same occurrence or
attack (e.g. a network scan can be detected, for instance, by
a NIDS and a honeypot). Moreover, the same attack may be
successively reported by the same probe (e.g. long network-
based attacks may get reported multiple times by the same
NIDS instance). Some anomaly detection algorithms may not
need the output of all probes – probes may generate more data
than required (or irrelevant data) for the anomaly detection
task. On the other hand, simpler probes may lack contextual
information or fail to comply with the event format (e.g. third-
party probes hard to customize). In summary, there are several
reasons why we need to optimize event flows by grouping
them. Many of these scenarios imply the need for some
preprocessing.

To address this need, we devised a modular event streaming
layer based on a set of domain processors for implementing the
first-preprocessing step, decoupled from the remaining compo-
nents (e.g. a given security probe) and implementing all sorts
of messaging and routing patterns (e.g. Content-Based Router,
Recipient List, Routing slip, Re-sequencer) [29]. Figure 3
shows an example of how Kafka Streams Domain Specific
Language (DSL) [30] is leveraged to implement a feature
aggregation task. Such tasks are the foundation of the domain
processor concept. In the presented example, the domain
processor extracts additional aggregated features grouped by
time windows on top of a stream of individual network packet
features.
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Fig. 3. Example of a feature aggregation by time windows using Kafka
Streams DSL API [3].

Moreover, Apache Kafka fits the idea of supporting different
types of message priorities and service goals such as through-
put, latency, durability or availability [31]. In that sense, a set
of practical experiments was conducted using Kafka to explore
and better understand how its settings can be used to tune the
platform to meet the requirements for next-generation IACS.
Overall, the experiments show that the design of the event
streaming layer, based on Apache Kafka, is not only flexible
enough to meet different deployment scenarios but also able to
be used as an efficient messaging broker mechanism capable
of coping with the large number of events expected on more
complex IACS environments.

On the other hand, the proposed data analytics concept
serves as an aggregation point for all the events originating
from multiple domains. It serves as an elastic approach where
multiple computation nodes can cooperatively and dynami-
cally perform a set of tasks. These processing tasks, which
can instantiate both slow or fast processing mechanisms, may,
for instance, implement multiple ML-based anomaly detection
algorithms. Instead of using popular frameworks such as
TensorFlow [32] or Scikit-learn [33] – which are mainly
focused on ML – Apache Spark [34] was selected as the
underlying computation platform. Spark is a general-purpose
computation framework with native support of both streaming
and batch processing, which provides additional flexibility to
implement different types of intrusion and anomaly detection.

Besides experimental work focused on assessing the system
scalability, the entire process of detecting a data exfiltration
operation – a real threat for IACS environments – was used
to demonstrate the proposed approach, including a proof of
concept implementation and the integration and evaluation of
various ML-based algorithms. Figure 4 illustrates the setup
used to recreate a data exfiltration scenario using Domain
Name System (DNS) tunnels. On the attacker’s side, a server
was setup in the cloud to behave as an authoritative DNS
server for two previously registered domains. Then, two
popular DNS tunneling tools (dnscat2 [35] and iodine [36])
were used to produce 23 variations, including simple tunnel
handshakes using different DNS record types to encrypted
sessions, interactive shells, and the exfiltration of a complete
PLC project.
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On the detection side, to showcase the different anomaly
detection capabilities, a DNS probe was used for extracting
packet-specific features (as described below) from the DNS
network traffic. Then, a domain processor capable of extracting
additional features, based on the aggregation of the messages
into time windows, was created. Finally, an anomaly detection
pipeline was created for training/classifying DNS traffic as
normal or abnormal (i.e. a possible attempt of DNS tunneling).

Table I summarises the obtained results. This use case
highlights the benefits of the analytics layer to detect com-
plex threats and demonstrates the flexibility of the proposed
approach in combining different algorithms. Regarding the
proof-of-concept implementation, Apache Spark has proven
to be a good match for developing such an analytics layer,
enabling efficient and distributed computation capabilities.
Besides performance, the Spark-rich feature set and its APIs
for third-party integration have also proven to be a good
choice, supporting the idea of a unified approach for streaming
and batch processing.

V. CONCLUSIONS

We started by exploring several practical experiments and
attack scenarios using Modbus and PCOM. The lack of
previous literature about the security of PCOM motivated a
more ambitious analysis, from both the attacker’s and the
defendant’s points of view, that show how less known SCADA
protocols can be used to conduct attacks in IACS. This work
eventually led to several contributions to open-source tools
such as Wireshark, Snort, Metasploit, Nmap and Scapy.

Next, we addressed the most significant perceived gap in the
literature: the challenge of combining the vast array of data
sources, probes and security components that characterise the

TABLE I
SUMMARY OF THE KEY PERFORMANCE INDICATORS USING A DATASET

WITH AGGREGATED NETWORK FEATURES [20].

Technique Accuracy Precision Recall F1 AUC

Decision Tree 0.9753 0.981 0.9699 0.9754 0.9753
Random Forests 0.9867 0.9887 0.985 0.9868 0.9867
GBT 0.981 0.9848 0.9774 0.9811 0.981
XGBoost 0.9886 0.9924 0.985 0.9887 0.9886
LightGBM 0.9734 0.9737 0.9737 0.9737 0.9734
Linear SVM 0.981 0.9923 0.9699 0.981 0.9811
MLPC 0.9867 0.9924 0.9812 0.9868 0.9868
Naive Bayes 0.9411 0.9916 0.891 0.9386 0.9416
Logistic Regression 0.981 0.9812 0.9812 0.9812 0.981
Area under ROC (UAC).

next generation of IACS. To fulfil that gap, we leveraged recent
advances in the fields of Big Data and event processing and
assessed their suitability to IACS security management.

A data-driven holistic framework was proposed for monitor-
ing the cyber-security of next-generation IACS and its two key
components (streaming and data analytics) were presented and
evaluated. This is a powerful way of decoupling data collection
from data processing, domain-wise and location-wise.

In contrast to other works, we focused on combining
the data and knowledge from different sources into a more
comprehensive IADS approach. The advantage of having
different types of specific security mechanisms at both local
and global levels was a key driver for this work. Different ML-
based mechanisms to detect anomalies in IACS environments
were integrate and evaluated, highlighting the benefits of the
proposed approach in terms of easily integrating additional
anomaly detection techniques.

The complexity of modern IACS is still one of the biggest
challenges for the anomaly detection process. The feasibility
and practical evaluation of additional SCADA-specific algo-
rithms proposed in the literature needs further work. Moreover,
even though this thesis argues that SCADA security is not
only about network communication protocols, most of the
evaluation work focused on network-based scenarios – due
to logistic and practical reasons. Nevertheless, it would be
interesting to explore other types of data sources.
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