
My Services Got Old! Can Kubernetes Handle the
Aging of Microservices?

José Flora, Paulo Gonçalves, Miguel Teixeira, Nuno Antunes
University of Coimbra, CISUC, DEI

Coimbra, Portugal
jeflora@dei.uc.pt, pgoncalves@dei.uc.pt, mteixeira@student.dei.uc.pt, nmsa@dei.uc.pt

Abstract—The exploding popularity of microservice based
applications is taking companies to adopt them along with cloud
services to support them. Containers are the common deployment
infrastructures that currently serve millions of customers daily,
being managed using orchestration platforms that monitor, man-
age, and automate most of the work. However, there are multiple
concerns with the claims put forward by the developers of such
tools. In this paper, we study the effects of aging in microservices
and the utilization of faults to accelerate aging effects while
evaluating the capacity of Kubernetes to detect microservice
aging. We consider three operation scenarios for a representative
microservice-based system through the utilization of stress testing
and fault injection as a manner to potentiate aging in the services
composing the system to evaluate the capacity of Kubernetes
mechanisms to detect it. The results demonstrate that even though
some services tend to accumulate aging effects, with increasing
resource consumption, Kubernetes does not detect them nor acts
on them, which indicates that the probe mechanisms may be
insufficient for aging scenarios. This factor may indicate the
necessity for more effective mechanisms, capable of detecting
aging early on and act on it in a more proactive manner without
requiring the services to become unresponsive.

Index Terms—aging, kubernetes, fault injection, microservices

I. INTRODUCTION

A huge number of companies are migrating or developing
their systems following a microservice approach [1], taking
advantage of cloud infrastructure and the on-demand avail-
ability of resources that allows systems to become more
adaptive and autonomous [2], [3]. These systems tend to
leverage software containers by using their lightweight and
easy instantiation to provide more efficient operation and
management of the system. Examples of container engines
include Docker (docker.com) and LXC (linuxcontainers.org).
Still, the number of active microservices, and as a consequence
containers, tends to grow to manually unmanageable amounts,
thus resorting to the utilization of orchestrators is the de
facto. This approach reduces costs and allows automation
of deployment, monitoring, and management of both the
microservices and the infrastructure supporting them.

Furthermore, they also provide some resilience properties
that increase the ability of systems to withstand design or
implementation faults and malicious threats, for instance,
tolerating faults, improving availability or performance. There
are multiple orchestrators available, the most popular being
Kubernetes, reaching 78% of the companies that use

containers in their infrastructure [4]. Nevertheless, there are
others, such as Apache Mesos (mesos.apache.org) or Docker
Swarm (docs.docker.com/engine/swarm).

There is a relevant problem related to the aging of mi-
croservices which is underexplored, and can potentially cause
significant damage in systems, most importantly business-
critical systems. Software aging [5] has been researched in pre-
vious works, mainly focusing on monolithic applications [6],
or traditional systems, but also with focus on virtualization
platforms such as hypervisors [7] or container engines [8]. Ku-
bernetes provides features that intend to increase the resilience
of microservice-based systems but research attention has been
limited. An example of such features are probes, that perform
health checks on the services, and a study focusing on their
capacity in aging detection would contribute to developers
awareness regarding their effectiveness.

In this paper, the role of Kubernetes in detecting aging
effects is studied and the use of faults to accelerate aging
effects in microservices is proposed as a manner to have timely
results for studies conducted in the context of microservices.
For this, we perform an aging study on a representative
microservice-based e-commerce application and monitor its
resource consumption over a period of time, according to three
scenarios where the load and conditions of the systems vary.
We apply a normal load, a stress load, and the stress load
with the presence of faults. These intend to provide different
viewpoints of the system behavior and analyze the impacts
of stressing microservices and using faults to accelerate these
effects.

The analysis of the results demonstrate the existence of
aging effects in the microservices that are most requested, with
the continuous increase of resource consumption, especially
memory, over the timeframe of the experiments. Kubernetes
probes demonstrate not being very effective in the detection of
problems in the system. The practical experiments show that
the utilization of faults to accelerate aging in microservices
is effective with the faulty services exhibiting faster aging,
allowing the time span decrease of aging experiments in the
context of microservice-based systems.

The rest of the paper is structured as follows. Section II
presents background and the motivation for this work. Sec-
tion III discusses background on microservice-based systems
and Kubernetes probes, while Section IV describes the ex-
perimental study: with the experimental campaign and setup

40

2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)

978-1-6654-2603-9/21/$31.00 ©2021 IEEE
DOI 10.1109/ISSREW53611.2021.00042

used. Section V presents and discusses the results observed.
Section VI condenses the lessons learned and threats to
validity, Section VII reviews previous work and Section VIII
concludes the paper.

II. BACKGROUND AND MOTIVATION

Microservices have emerged as a common and well-
accepted manner of devising, developing, and deploying sys-
tems that support several types of businesses. The main char-
acteristics of their adoption remains connected to the flexibility
and ease of utilization and management that is, typically, con-
ducted through the use of orchestration platforms. Kubernetes
is the most popular on the market [4], supporting diverse types
of applications, from common web applications to business-
critical systems. One of its key advantages is that it provides
several features that improve and ease management efforts
and time consumption with enough autonomy after the initial
configuration.

Kubernetes provides by default the capability of detecting
failing services and performing a restart so that they can start
responding to customer requests again. As this is a very simple
approach, and it cannot be configured, Kubernetes also pro-
vides Probes which are small snippets of code or commands
used to continuously perform health verification and detect the
occurrence of malfunctions. There are three types of probes
available, discussed in more detail in the next section, that can
increase the resilience of microservice-based systems [9]. The
startup probe, used to assure that the application inside the
container has started; the readiness probe, which serves to
indicate whether the container is ready to respond to requests;
and the liveness probe that indicates whether the container
is running as expected. Upon the identification of a failure,
the failing container is restarted according to the selected
policy: every time a failure is identified; never; regardless of
the failures; or only when the container exits with an error
code, thus mitigating unexpected terminations.

The nature of such failures are also an important topic,
that is, to discover which kinds of faults are responsible for
failures detected by probes implemented in the system. As a
kind of fault, the aging of systems has been researched in the
past along with its impacts on system performance and the
methods of rejuvenating the system affected with minimum
impact on its availability. However, the majority of works have
been focusing on system that do not follow the microservices
approach hence, there is a need to research the topic.

The characteristics of microservices, described in more
detail next, require more effective and sensible manners to
swiftly detect and report the occurrence of aging. On the
one hand, each microservice has a smaller pool of resources
available when compared to traditional monolithic applications
which requires higher sensitivity in the detection of aging
effects to act upon the problem before the affected service
becomes a bottleneck for the system. On the other hand, the
experiments conducted before deploying the services cannot be
extended during large periods of time as in traditional systems,
where their duration could take days or even months.

Therefore, our work intends to experimentally evaluate the
capacity of Kubernetes to detect and act on aging-related
problems in microservices and use fault injection to accelerate
the effects of aging in microservices so that it is possible to
identify problems without disturbing the use of development
and management pipelines.

III. MICROSERVICE-BASED SYSTEMS

Microservice-based systems are gaining ground in ap-
plication design, development, and deployment [10], [11].
Emerging over recent years, they propose to break complex
software into indivisible components that potentiate reuse
and modularity, through leveraging communication between
services. These resolve old concerns related to scalability and
configurability of systems that many times were very hard
to adapt to sudden modifications in the environment, as for
instance user demand. Following, we detail some aspects of
microservice architectures and Kubernetes features, which are
commonly used to deploy and manage microservices.

A. Microservice Architectures

Microservice architectures intend to overcome limitations
of monolithic applications, traditional software systems, char-
acterised very coupled components incapable of executing
independently [10], [12], [13]. The monolithic approach eases
distribution and deployment as it only requires a package with
all the components to be put in production, which results in
lower modularity of the components produced as it is easy
for them to communicate in a coupled manner and share
snippets of code. Further problems arise with the age of the
monolith, resulting in harder maintainability over time, with
dependencies becoming more difficult to manage and maintain
in order to work properly [12].

The resources provided to monoliths are mostly inappro-
priately handled, given that some components could require
more memory while others could demand more disk speed
or storage [12]. It becomes cumbersome to satisfy all the
deployment configurations requirements in a manner to fit
the whole application effectively. This leads to scalability
limitations as monoliths were not correctly prepared to deal
with replication and would hardly operate effectively under an
increase in demand.

On the other hand, microservices emerged with the objec-
tive of mitigating the identified limitations. The main idea
is to decompose the different parts of the monoliths into
indivisible units of software that conduct a very well defined
function [10]–[13]. These units, denominated microservices,
cooperate to perform complex tasks that are requested to the
system.

Aside from more effective management and technology
adoption freedom, it is easier to have different views of the
system and maintain them. For instance, when a microservice
is updated, or a new version is released, it does not imply a
complete reboot of the application, as it would with a mono-
lithic approach. As microservices are small, they are easier
and faster to instantiate or remove, therefore, potentiating the

41

application of scalability and elasticity to provide resources
to the system as they are needed to serve the customers
requesting functionalities.

B. Kubernetes and Kubernetes Probes

Kubernetes is an open-source container manager that auto-
mates the management and deployment of applications. Based
on a master-node architecture, it is through the master machine
that manages all the node machines present in a cluster. The
master is responsible for deploying all the containers com-
posing the system into the available nodes, according to the
configuration defined, and monitor their resource consumption.
It can perform diverse operations to assure the healthy status
of each component, as auto-scaling or container restart.

With regard to the protection of the services, Kubernetes
provides three different probes whose objective is the assur-
ance that applications are delivering the expected service and
ready to respond to incoming requests [9]. As these mech-
anisms are potentially used in critically diverse applications,
it is relevant to understand the underlying operation of these
mechanisms, their advantages and drawbacks. The two major
types of probes present in Kubernetes [9] are:

Readiness Probe: assesses whether or not a container is
ready to take requests. On the event of failure, the endpoint
controller removes the IP of the pod containing the failing
container from all the endpoints that match it. A pod is con-
sidered ready when all of its containers are ready. Otherwise,
it is removed from the service load balancers.

Liveness Probe: consistently conducts the probing of the
container to assess whether it is running as intended. On the
event of a failure detection, the container is killed and the
restart policy controls the next operation performed. When a
container is killed, a new one is created to replace it.

In practice, each probe can be defined using three different
approaches: an HTTP request (e.g. a GET request); a TCP
connection, where a connection is established to a specified
port; and a user-defined command (e.g. check if a file exists).

After the container starts, the startup probe operates to
validate the correct initialization of the container. Then, the
readiness and liveness probes kick in. The readiness probe
checks the ability of the container to receive and process
requests. The liveness probe continuously performs the defined
checks and acts by restarting the container if it detects that it
is in a failing state.

IV. EXPERIMENTAL STUDY

Kubernetes supports diverse microservice applications, as
business-critical systems, that require different levels of re-
silience and performance. It provides some features that
allow to increase the resilience of systems by performing
continuous monitoring and detecting malfunctions when they
occur. Probes, as discussed, are an example of the features
available. Their utilization is advised as they conduct constant
verification and act upon the failing container to overcome the
problems. Nevertheless, there is little information regarding

their detection effectiveness in the identification of service
failures when aging affects the microservice.

The objectives of this experimental study is two-fold: i)
evaluate the detection effectiveness of Kubernetes probes of
aging effects in microservices; and ii) study the acceleration
of aging effects in microservices through the utilization of
software faults.

For this, we devised an experimental campaign based on
a representative microservice-based e-commerce system and
applied three different scenarios, with normal operation, with
stress testing, and with the utilization of an aging-related fault.
The information obtained from this study would contribute
to clearer picture of the protection granted by Kubernetes
probes. Further, it also provides the possibility of understand-
ing whether aging can be accelerated to usable timeframes
within the typical constraints of development and deployment
of microservice-based systems.

A. Experimental Campaign

The experimental study in this work is based on an exper-
imental campaign that targets a representative microservice-
based e-commerce system, composed of 5 microservices in
three different scenarios. The different components of the
experimental campaign executed are described and detailed
in the following subsections.

1) Target Microservice System: For this work, we selected
a representative microservice application that has been used in
the past for several research works, the TeaStore [14] appli-
cation, which was developed for the main purpose of serving
as testbed in scientific works. Fig. 1 shows the architecture
of TeaStore, which is composed of 5 services designed
to discover themselves through a Registry component, to
which each running service instance announces itself, as a way
for the application to operate regardless of the active service
replicas and their distribution.

Fig. 1. TeaStore service architecture from [14].

The system is also composed by a database that stores all
the relevant data and communicates only with the Persistence
service. All TeaStore services are java-based with a com-
mon base image.

2) Workload: To exercise the application testbed, we used
the Locust (locust.io) load testing framework. For the purpose
of this work, we generated two workloads, a normal workload,
that has an intensity below the maximum the system can

42

respond to, and a stress workload, which oscillates but mainly
remains above the system’s acceptable levels of demand.

The normal load is a constant load with 9 active users
generating requests over the duration of the experiment. The
stress load is periodic, repeating itself every hour, and oscil-
lates between 10 and 100 active users. Fig. 2 depicts the two
load intensities for a one-hour period.

Fig. 2. The load intensities used for the two workloads.

Furthermore, the clients request profile for TeaStore was
based on the buy profile given by the authors and emulates
users browsing the store and conducting purchases of selected
items. This profile is available in the public repository [15].
The load intensity was combined with the user behaviour
profile to generate the workload exercising the system.

Other detail considered in this work is the injection of a fault
that accelerates aging. The fault considered starts to manifest
over time with the performance deterioration of the service.
The service containing the fault is the WebUI, responsible for
receiving the requests and forwarding them to the appropriate
services that will perform the intended work, so that it can
assemble the view presented to the user.

This is a medium frequency persistent fault. It is based
on the description available on an industrial survey of mi-
croservices faults [16]. In microservices environments, many
times, faults are complex and propagate across services, which
means that a fault slowing down a service can impair the whole
system given their reliance on each other.

3) Experimental Scenarios: To analyse the aspects of mi-
croservice aging that were the objective of this work, we
devised three scenarios of operation, each with their own goal.

The simple scenario consisted of a normal operation of the
system over 48h exercised with the normal workload depicted
in Figure 2.

The stress scenario executed over a period of 48h with the
use of a stress load that is represented in Figure 2, therefore
overloading the system in order to provoke aging behavior
under stressful conditions.

The faulty scenario is a merge of the stress scenario with
the presence of a fault in the WebUI service of the application.
This scenario runs for a shorter period of time, only 24h, as
it is enough to demonstrate the intended use of accelerating
the effects of aging in microservices.

Each scenario intended to accomplish the following goals,
respectively: i) have the baseline behaviour for the system;
ii) obtain the effects of aging for the system under stressful

conditions and iii) understand whether faults can be used to
accelerate aging effects in microservices.

4) Measurements: To observe the behavior of the system,
we collected multiple metrics. To understand the performance
of the application under all the different conditions described
previously, we collected information regarding the transactions
executed by the system using the client load generator Locust.
For the purpose of identifying aging in the services, we
used Kubernetes Metrics (github.com/kubernetes-sigs/metrics-
server), which allows to collect CPU and memory metrics per
service to understand the application usage of resources.

Furthermore, Events are a resource type in Kubernetes that
are created when other resources have errors, changes in state,
or other messages, and are useful to debug malfunctions in
the system [17]. Because containers have a status that can be
modified, we can use Kubernetes Events to log information
regarding whether a probe check detected an erroneous state
in its operation, where the container is considered to be
unhealthy, otherwise it is considered healthy.

During the experiments, we used Kubernetes Events to
extract information about the pods containing the status of
the containers inside each pod and messages that indicate
whether the probes have failed. Based upon this information
it is possible to compute the total number of times a container
became unhealthy for each service and the time of each
occurrence. This information is useful to understand whether
or not the probes were able to detect if and when a service
was under problems in its operation.

B. Experimental Setup

We followed the deployment guidelines available at the
application’s GitHub repository [15] and deployed it into a
Kubernetes cluster, which consisted of a master and a node
machine. Services are instantiated through one active replica,
with the exception of WebUI and Persistence which have
two active replicas each.

The Kubernetes master has a processor with 3 cores and
16GB of RAM, with one worker node which runs with 4 cores
and 16GB of RAM. Meanwhile the client that generates the
workload has 5 cores and 16GB of RAM. All the machines
are running Ubuntu and operate as depicted in Fig. 3.

Fig. 3. Experimental Campaign Architecture Setup.

The Kubernetes master orchestrates the e-commerce appli-
cation while all services are instantiated in the node machine.
The application is exercised through the use of Locust load
generator that is running in the client machine and communi-
cating with the application.

�

��

��

��

��

���

���

�
��
��
��
	

�
�

���

���	
��		

���������

����
����	�
�	

����������

��������������������
��

���� 	������

����� 	���������

����

43

Image Persistence 1 Persistence 2 Registry WebUI 1 WebUI 2

Stress Scenario

C
PU

C
onsum

ption

0

200

400

600

800

1000

1200

m
ill

ic
pu

Simple Scenario

0
500

1000
1500
2000
2500
3000
3500
4000
4500

M
eb

iB
yt

e

0

10

20

30

40

50

60

70

80

90

100

0
11

 52
0
23

 04
0
34

 56
0
46

 08
0
57

 60
0
69

 12
0
80

 64
0
92

 16
0

10
3 6

80

11
5 2

00

12
6 7

20

13
8 2

40

14
9 7

60

16
1 2

80

17
2 8

00

Su
ce

ss
fu

l t
ra

ns
ac

tio
ns

Seconds

0
11

 52
0

23
 04

0
34

 56
0

46
 08

0
57

 60
0

69
 12

0
80

 64
0

92
 16

0

10
3 6

80

11
5 2

00

12
6 7

20

13
8 2

40

14
9 7

60

16
1 2

80

17
2 8

00

Seconds

Faulty Scenario

M
em

ory
C

onsum
ption

0
12

 00
0

24
 00

0
36

 00
0

48
 00

0
60

 00
0

72
 00

0
84

 00
0

Seconds

Transactions

Fig. 4. Charts results matrix with the memory, CPU consumption, and transactions over time for each scenario. Top corresponds to CPU, middle to memory
and bottom to transactions executed. From the left to the right we have: simple scenario; stress scenario; and faulty scenario.

V. RESULTS AND DISCUSSION

This section presents and discusses the results and obser-
vations obtained during the experimental campaign. Fig. 4
presents the complete results of the experimental campaign.
Recommender and Auth and DB services were sup-
pressed as their behavior was similar to Registry and
Image services, respectively, thus not adding much and allow-
ing the visualization to be clearer. The charts presented in the
upper line contain the information related to CPU usage, the
middle line presents data from the memory consumption, and
the bottom line presents data from the transactions executed
by the system. The scenarios are presented from left to right:
simple scenario, stress scenario, and faulty scenario.

Across all scenarios, the system is exercised with the
corresponding workloads, as described in section IV-A. It is
possible to observe a consumption of resources that denotes
unsteadiness at the beginning and at the end of the exper-
iments, consistent with the warm-up and cool-down phases.
Thus, these phases are not considered in the analysis of the
results obtained, instead focusing it on the steady phase of the
system. Over this period, the microsevices are warmed-up and

functioning as normally would in a real environment, receiving
and responding to user requests.

With regard to CPU usage, the utilization is clearly very
stable for each scenario analyzed, although some outliers and
spikes are observed. However, in between scenarios there are
clear variations. While the simple and faulty scenarios have
all services with an upper bound around 200 millicpu, the
stress scenario shows higher oscillations in the utilization of
CPU across the services, especially in the final quarter of the
experiment.

In the stress scenario, the spikes in some services (mainly
Persistence and WebUI) are constantly increasing, cross-
ing 400 millicpu by the 16th hour of the experiment and 600
millicpu by the 30th. It is noticeable the increasing oscillation
of the CPU consumption in these services, which indicates
more resources being used owing to the accumulation of user
requests.

On the faulty scenario, there are few oscillation, similar
to the simple scenario, with the CPU consumption hardly
crossing the 400 millicpu value. Still, in the second halt there
is a slight increase of oscillation to higher levels, as in the
stress scenario, but is taking more time to achieve that range.

44

Overall, the CPU consumption is clearly affected by the
stress load subjected to the system, while it remains more
stable and with lower spikes over the simple scenario and with
the presence of the fault used during the faulty scenario.

The observations of memory usage depict more dissimilarity
between services. That is, there are some services, such as
WebUI and Persistence, that suffer from the accumula-
tion of memory over the period of the experimental campaign.
Yet, the services have different degrees of accumulation, as
WebUI replicas grow faster than Persistence replicas.

The analysis of the simple scenario shows very consistent
memory usage across all the services. The Registry and
the Image services remain very stable only showing slight
increases over the period of experimentation. On the other
hand, WebUI and Persistence have a trend to accumulate
memory usage which indicates that these services are more
prone to suffer from memory accumulation and aging effects.
Still, the variation under normal workloads are slight and
manageable as the memory use does not grow to significant
values.

For the case of the stress scenario, we observe a similar be-
havior for all services except for WebUI and Persistence.
When subject to stress, WebUI service instances grow their
memory consumption from around 600 to close to 2500
MebiBytes each. This represents an increase above 300%,
which is a concerning factor when dealing with microservices
that tend to be under stress for a period of time before scaling
events take place. Regarding Persistence, although the
increase is not as large, it still displays a slight increase in
memory use. This may indicate that stressed services can
suffer from aging if the load faced varies frequently.

With regard to the faulty scenario, although the experimen-
tation period is shorter, we successfully achieve aging effects
on microservices with higher intensity. The fault injected in
the WebUI service increases the memory usage by more than
600%, from around 600 to close to 4300 MebiBytes, in
each replica, in just under 10h of experimentation. Therefore,
the use of faults can significantly reduce the time required to
achieve higher levels of aging effects demonstration, which in
turn makes the evaluation of mechanisms and tools that should
detect aging on microservices more practical.

Regarding the successful transactions responded by the
system, these vary according to the workload intensity used
and it is possible to see the system having a tendency to
respond to fewer transactions successfully over time, which
can be a consequence of resource accumulation.

The mechanism for malfunction detection used in this work,
in this case focused on aging effects on microservices, fell
short, not detecting any problem with the services. Neither
Kubernetes probes, nor the standard mechanism of detecting
service malfunction, raise alarms for any problem in the
system. Both the stress and the faulty scenarios demonstrate
significant aging effects in the two service instances of the
WebUI. In both cases, their memory usage is significantly
higher than in the base case (simple scenario).

Overall, the main observations and conclusions of this

experiments is that aging also affects microservices and that
Kubernetes mechanisms fall short in detecting aging, thus not
acting on their correction through service rejuvenation. The
experiments demonstrate that a stress load can cause resource
accumulation which can be accelerated through fault injection
so that it is possible to have faster effects.

VI. LESSONS LEARNED AND THREATS TO VALIDITY

The experiments and analysis conducted with focus on
Kubernetes capacity to detect aging provided valuable insight
and knowledge that can be very useful in decision-making
processes and the experiments conducted in this context. In
this section, we provide the lessons extracted from the work
performed and also limitations that present threats to the
validity of some findings.

A. Lessons Learned

Based on the analysis we performed of the work conducted,
there are some lessons that we have drawn and are important
findings.

Aging effects can be observed in microservices as
in traditional monolithic applications. Although typically
smaller in size and computing base, microservices tend to
be stressed in periods prior to the activation of auto-scaling
mechanisms as they are designed to operate in scalable and
elastic environments, adapting to the level of request demand
through the use of replication. The increase in the number
of active replicas allows to reduce the stress faced by older
microservices, still if not addressed the stress effects can
accumulate and impair their normal operation.

The utilization of faults in microservices can reduce the
time period required to observe the aging effects. The
fault used in this work has the possibility to be configured
and used to accelerate the microservice resource consumption
at different rates, according to need. Faults can therefore
accelerate the testing process before deployment and reduce
the risk of compromising the performance, and even security,
of the complete system. One slow microservice, depending
on its criticality to the system, can become a bottleneck or
a source of resource waste owing to the aging effects. Thus,
the utilization of faults that stimulate aging can be very useful
to identify bottlenecks or timely evaluate microservice aging
detection mechanisms.

Kubernetes mechanisms were unable to detect the aging
of the microservices affected. During our work, Kubernetes
did not raise any alarm with regard to the health status of
the services that demonstrated aging, mainly through mem-
ory usage accumulation. This factor is important to keep in
mind when adopting these mechanisms to operate in case of
aging and it shows that methodologies and tools to improve
microservice aging detection effectiveness are required in the
future.

B. Threats to Validity

Even considering the interesting findings, some details are
worth noting as threats to the validity of our work.

45

The experiments executed in this work were not repeated
and there are some aspects that could vary among executions
as for instance network latency. However, these have small
impact on the observations as the duration of the runs for
each scenario is quite extended (24h and 48h). Thus, the
final results are expected to be very similar, regardless.

A limitation that can be raised is that only one testbed was
used to perform the experiments. Other testbed with different
technologies, such as SockShop [18], would contribute and
improve the generalization and the validity of the results.
Nevertheless, TeaStore is a representative testbed, used in
multiple contexts, and therefore can be considered adequate
for the generalization we are trying to achieve.

Also, in this work only one fault was used, that was focused
on memory consumption and management. Yet, it is not an
intrusive fault, being realistic and based on what could be
found in real world scenarios, and is in fact based on prior
work of an industrial survey in the context of microservice-
based systems [16]. In this way, we intend to mitigate this
concern and present a representative fault.

VII. RELATED WORK

Software aging can be defined as the accumulation of
resource utilization owing to faults present in the software
released to production [5]. These faults, which are hard to
detect during testing, have an effect on the system over time,
tackling the performance, resulting in higher response times. It
is very improbable to not have faults in large codebases, owing
to time or budget constraints, thus aging can occur from the
accumulation of faults’ effects. Rejuvenation is the process of
aging mitigation, or effect reduction, and, for instance, can be
performed through restarting an application with the intent of
returning the software to a clean state.

Software aging has been researched and several works are
available, being applied to some real case scenarios [19]. Web
servers were studied with different models used to monitor
the system [20]. This work was then extended, focusing on
Apache, concluding that when subjected to overwhelming
workloads there are traces of aging but also minor rejuve-
nation [6].

Lately there has been research focused on virtualization
platforms. Docker aging effects were evaluated and it was
possible to observe aging effects [8]. Other work demonstrated
problems not directly connected to Docker but it would also
affect the ability to create new containers [21].

Kubernetes has been a topic of research owing to in-
creased use in industry, still mainly focusing on scalability.
Several features are provided to address software problems
in an autonomous manner, as for instance, the Horizontal
Pod Autoscaler (HPA) that allows the autoscaling of services
according to demand. Previous to scale up, it is common for
the service to be under stress load for a short period of time, to
better use the resources available and not frequently perform
scaling up or down. HPA has been extensively researched
and improvements have been proposed allowing developers
for better results, with higher flexibility and effectiveness [22].

Probes are an example of other approaches to monitor services
and identify malfunction, which perform periodical health
checks on the corresponding services [9].

In microservice applications, various services cooperate to
provide the intended goal of the application. Most of the
work done focuses on container deployments [23], [24], with
a substantial emphasis on Kubernetes; but also on perfor-
mance and the implications of load balancing and memory
reservation size, finding that different setups require distinct
attentions [23].

However, micoservice aging has not received significant
attention. Previous work performs a preliminary study on the
subject, applying known principles of aging to microservices
and observing the results [25]. To detect aging, a deep learning
model was applied and proved to be effective. Still, it does
not go too deep into the root cause, only proving that it is a
relevant subject that needs more attention.

VIII. CONCLUSIONS

The work presented demonstrates that aging can affect
microservices and exacerbate their resource consumption.
Also, Kubernetes probes do not show the ability to detect
aging-related problems in the services monitored. This factor
indicates that work in more effective approaches for early
detection of microservices aging is needed.

A more effective approach would be improving the probing
mechanism or devising a methodology that can leverage other
data sources, such as service data, to proactively identify
aging. Furthermore, it would contribute to the prevention of
microservice failures that many times can cause problems at
the system level. Besides, injecting faults to accelerate aging
results in shorter periods of time required to evaluate the effec-
tiveness of such mechanisms and allow timelier conclusions.

ACKNOWLEDGMENTS

This work is supported by the Portuguese Foundation
for Science and Technology (FCT) through the Ph.D. grant
SFRH/BD/05145/2020. It is also supported by the project
AIDA – Adaptive, Intelligent and Distributed Assurance Plat-
form (POCI-01-0247-FEDER-045907), co-financed by the
European Regional Development Fund (ERDF) through the
Operational Program for Competitiveness and Internationali-
sation (COMPETE2020) and by the Portuguese FCT under
CMU Portugal.

REFERENCES

[1] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-
croservices: The Journey So Far and Challenges Ahead,” IEEE Software,
vol. 35, no. 3, pp. 24–35, 2018.

[2] S. Sultan, I. Ahmad, and T. Dimitriou, “Container Security: Issues,
Challenges, and the Road Ahead,” IEEE Access, vol. 7, pp. 52 976–
52 996, 2019.

[3] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
Computer Security Division, Information Technology Laboratory, Na-
tional, 2011.

[4] S. J. Vaughan-Nichols, “Kubernetes jumps in popularity,”
zdnet.com/article/kubernetes-jumps-in-popularity, 2020.

[5] D. L. Parnas, “Software aging,” in Proceedings of 16th International
Conference on Software Engineering. IEEE, 1994, pp. 279–287.

46

[6] M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi, “Analysis of
software aging in a web server,” IEEE Transactions on Reliability,
vol. 55, no. 3, pp. 411–420, 2006.

[7] L. Beierlieb, L. Iffländer, A. Milenkoski, C. F. Gonçalves, N. Antunes,
and S. Kounev, “Towards testing the software aging behavior of hyper-
visor hypercall interfaces,” in 2019 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). IEEE, 2019,
pp. 218–224.

[8] M. Torquato and M. Vieira, “An experimental study of software aging
and rejuvenation in dockerd,” in 2019 15th European Dependable
Computing Conference (EDCC). IEEE, 2019, pp. 1–6.

[9] Kubernetes, “Configure liveness, readiness and startup probes,”
kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-
readiness-startup-probes, 2020.

[10] Martin Fowler and James Lewis, “Microservices,” 2014. [Online].
Available: https://martinfowler.com/articles/microservices.html

[11] C. Pahl and P. Jamshidi, “Microservices: A Systematic Mapping Study:,”
in Proceedings of the 6th International Conference on Cloud Computing
and Services Science, 2016, pp. 137–146.

[12] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today,
and tomorrow,” arXiv:1606.04036 [cs], 2017. [Online]. Available:
http://arxiv.org/abs/1606.04036

[13] S. Newman, Building Microservices: Designing Fine-Grained Systems.
”O’Reilly Media, Inc.”, 2015.

[14] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann,
and S. Kounev, “TeaStore: A Micro-Service Reference Application
for Benchmarking, Modeling and Resource Management Research,” in
2018 IEEE 26th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS).
IEEE, 2018, pp. 223–236.

[15] D. Research, “DescartesResearch/TeaStore,”
github.com/DescartesResearch/TeaStore, 2018.

[16] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
Analysis and Debugging of Microservice Systems: Industrial Survey,
Benchmark System, and Empirical Study,” IEEE Transactions on Soft-
ware Engineering, 2018.

[17] K. Jackson, “Types of Kubernetes Events,”
bluematador.com/blog/kubernetes-events-explained, 2020.

[18] Weaveworks, “Sock shop : A microservice demo application,”
github.com/microservices-demo/microservices-demo, 2017.

[19] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in 2008 IEEE International Conference on Software Reliability
Engineering Workshops (ISSRE Wksp), 2008, pp. 1–6.

[20] L. Li, K. Vaidyanathan, and K. Trivedi, “An approach for estimation of
software aging in a web server,” in Proceedings International Symposium
on Empirical Software Engineering, 2002, pp. 91–100.

[21] F. Oliveira, J. Araujo, R. Matos, L. Lins, A. Rodrigues, and P. Maciel,
“Experimental evaluation of software aging effects in a container-based
virtualization platform,” in 2020 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2020, pp. 414–419.

[22] A. Abdel Khaleq and I. Ra, “Agnostic approach for microservices
autoscaling in cloud applications,” in 2019 International Conference on
Computational Science and Computational Intelligence (CSCI), 2019,
pp. 1411–1415.

[23] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing microser-
vice performance,” in 2018 IEEE International Conference on Cloud
Engineering (IC2E), 2018, pp. 159–169.

[24] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Stein-
der, “Performance evaluation of microservices architectures using con-
tainers,” in 2015 IEEE 14th International Symposium on Network
Computing and Applications, 2015, pp. 27–34.

[25] J. Yue, X. Wu, and Y. Xue, “Microservice aging and rejuvenation,” in
2020 World Conference on Computing and Communication Technologies
(WCCCT), 2020, pp. 1–5.

47

