
Analysis of VM Migration Scheduling as Moving Target Defense
against insider attacks

Matheus Torquato

University of Coimbra, CISUC, DEI

Coimbra, Portugal

mdmelo@dei.uc.pt

Federal Institute of Alagoas, Campus

Arapiraca

Arapiraca, Brazil

matheus.torquato@ifal.edu.br

Paulo Maciel

Centro de Informática, Universidade

Federal de Pernambuco (CIn-UFPE)

Recife, Brazil

prmm@cin.ufpe.br

Marco Vieira

University of Coimbra, CISUC, DEI

Coimbra, Portugal

mvieira@dei.uc.pt

ABSTRACT
As cybersecurity threats evolve, cloud computing defenses must

adapt to face new challenges. Unfortunately, due to resource shar-

ing, cloud computing platforms open the door for insider attacks,
which consist of malicious actions from cloud authorized users

(e.g., clients of an Infrastructure-as-a-Service (IaaS) cloud) target-

ing the co-hosted users or the underlying provider environment.

Virtual machine (VM) migration is a Moving Target Defense (MTD)

technique to mitigate insider attacks effects, as it provides VMs

positioning manageability. However, there is a clear demand for

studies quantifying the security benefits of VM migration-based

MTD considering different system architecture configurations. This

paper tries to fill such a gap by presenting a Stochastic Reward Net

model for the security evaluation of a VM migration-based MTD.

The security metric of interest is the probability of attack success.

We consider multiple architectures, ranging from one physical ma-

chine pool (without MTD) up to four physical machine pools. The

evaluation also considers the unavailability due to VM migration.

The key contributions are i) a set of results highlighting the proba-

bility of insider attacks success over time in different architectures

and VM migration schedules, and ii) suggestions for selecting VMs

as candidates for MTD deployment based on the tolerance levels

of the attack success probability. The results are validated against

simulation results to confirm the accuracy of the model.

CCS CONCEPTS
• Security andprivacy→Distributed systems security; •Com-
puting methodologies → Model development and analysis;
• Computer systems organization → Availability;

KEYWORDS
Moving Target Defense, VM migration, Migration-based Dynamic

Platform, Availability, Stochastic Petri Nets

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00

https://doi.org/10.1145/3412841.3441899

ACM Reference Format:
Matheus Torquato, Paulo Maciel, and Marco Vieira. 2021. Analysis of VM

Migration Scheduling as Moving Target Defense against insider attacks. In

The 36th ACM/SIGAPP Symposium on Applied Computing (SAC ’21), March
22–26, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3412841.3441899

1 INTRODUCTION
Despite being widely studied in the last years, recent surveys

show that cloud computing security still requires further improve-

ments [11][24]. One of the most challenging issues in cloud com-

puting security is the asymmetric advantage of the attackers. The
economic cost for building robust defenses is (usually) higher than

the cost for conducting a cybersecurity attack [5]. Moreover, the

attackers can exploit a single system vulnerability, while the de-

fenders should protect the system from all possible attack vectors.

Moving Target Defense (MTD) [15] reduces the asymmetric ad-
vantage by applying dynamic environment reconfiguration aiming

at defending or thwarting attacks [7]. The key idea is to continu-

ously shift the attack surface to increase complexity for the envi-

ronment reconnaissance or react to attacks dynamically [21].

A usual strategy for MTD in the cloud is VM migration [28]. The

standard approach is to move VMs to prevent them from attacking

co-resident VMs, or the underlying physical host [31][22]. However,

there is a need for evaluation approaches to quantify the security

benefits and availability impact when adopting different scheduling

of VM migration as MTD against insider attacks (i.e., MTD timing

problem [23]).

Wang et al. [31] proposed an algorithm for selecting proper

MTD timing to minimize the associated costs. Their work provided

insights on how to evaluate different MTD timing approaches. Pen-

ner and Guirguis [22] proposed a set of MTD mechanisms against

Multi-Armed Bandit (MAB) policy attacks. Our work considers a

similar threat model, but instead of MAB policies, we consider a

multi-stage attack (i.e., the attacker may first reconnoiter the envi-

ronment before launching the attack). Connell et al. [9] presented a

Markov model for performance evaluation of an MTD deployment

in a virtualized environment. Their work provided insights on i)

how to model the MTD problem and ii) validation through simula-

tion. Unlike these works, we decided to follow a straightforward

approach of applying the usual VM migration scheduling as MTD

(i.e., without requiring specificMTD implementations of third-party

https://doi.org/10.1145/3412841.3441899
https://doi.org/10.1145/3412841.3441899

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Torquato et al.

software). Moreover, our analysis aims at comparing different en-
vironmental configurations (i.e., different system architectures and

VM migration scheduling), showing their benefits and drawbacks

regarding availability and probability of attack success. Further-

more, we propose tolerance level metric in our analysis. Based on

the probability of attack success tolerated levels, tolerance levels
support the selection of VMs as candidates for MTD deployment

based on their expected runtime.

This paper presents a Stochastic Reward Net (SRN) model for

the evaluation of the probability of insider attack success in an

Infrastructure-as-a-Service (IaaS) cloud with MTD based on VMmi-

gration scheduling. The main goal is to evaluate the availability and

security of the MTD deployment in different scenarios. These sce-

narios comprise different system architectures (i.e., set of available

physical machine pools) and different VM migration scheduling

policies.

The considered MTD aims at moving the attacker’s VM between

the available physical machine pools. Each physical machine pool

has a unique hypervisor. Our threat model considers that the hy-

pervisor is the target of the insider attack. Therefore, each time

we move the VM, the attacker needs to reconnoiter the hypervisor

variant before proceeding.

The following research questions guided this research:

• RQ1: What is the attack success probability reduction when

using different system architectures?

• RQ2: What is the availability and attack success probability

impact due to different VM migration scheduling?

• RQ3: What is the time required for the system to reach a

specific attack success probability (i.e., tolerance level) consid-
ering different architectures and VM migration scheduling?

To address these questions, we evaluated two case studies. The

first focuses on reducing the attack success probability when en-

larging the system architecture from one physical machine pool to

four physical machine pools. The second case study investigates

the reduction of the attack success probability varying the VM mi-

gration scheduling. We considered policies with 30 minutes, 1 hour,
6 hours, 12 hours and 24 hours between VM migrations. Our results

highlight the tradeoff between availability and security. For exam-

ple, applying the policy 30 minutes in a system with four physical

machine pools, the probability of attack success at 24 hours is less

than 1%. When applying the policy 12 hours in the same conditions,

the probability is 23%. However, the system downtime due to VM

migrations at 24 hours is about 8 seconds for the policy 12 hours
and 3 minutes for the policy 30 minutes.

Up to our knowledge, this is the first paper to investigate how

different environmental configurations affect the security and avail-

ability levels of an IaaS cloud with VM migration scheduling as

MTD against insider attacks. VM migration scheduling is already

used in other contexts, such as software rejuvenation [3], load bal-

ancing [13], and sustainability [12]. Our contribution may be of

interest to system managers who intend to design multi-objective

VM migration scheduling policies.

The subsequent parts of this paper are organized as follows. Sec-

tion 2 presents the assumptions behind this research and Section 3

discusses the SRN model proposed. Section 4 presents the case

studies. Section 5 presents the model’s validation using simulation.

Section 6 presents some threats for validity and limitations of our

work. Section 7 discusses related work. Finally, Section 8 presents

conclusions and future work directions.

2 ASSUMPTIONS
The assumptions of this work are divided into three groups. The

first (Section 2.1) is related to system architecture. The second

(Section 2.2), is the threat model considered. The last (Section 2.3)

is related to the Moving Target Defense approach considered.

2.1 System Architecture
We consider a set of architectures, ranging from 1N (with one

physical machine pool - baseline) up to 4N 1
(with four different

physical machine pools). Figure 1 displays the system configuration

for a 2N architecture. The considered architecture has the following

characteristics:

(1) Each physical machine pool has its unique hypervisor variant

(hypervisor is the target of the attacker’s insider attack).
(2) It is possible to migrate VMs between the physical machine

pools.

(3) Each physical machine pool has at least one physical machine

available to receive migrations.

PM1 pool PM2 pool

PM1 host1 PM1 hostN

...

PM2 host1 PM2 hostN

...
VM

VM migration

Attacker’s

Insider
attack

PM1 hypervisor
variant

PM1 hypervisor
variant

PM2 hypervisor
variant

PM2 hypervisor
variant

Figure 1: System configuration - 2N architecture

2.2 Threat Model
The attacker has authorized control of one VM in the environment.

The attacker goal is to perform an insider attack targeting the

underlying hypervisor
2
, which is the middleware between the VMs

and the physical host.

When assuming the control of the hypervisor, the attacker can
monitor or compromise co-resident VMs. We assume that the at-
tacker will not resign until the attack success. The insider attack has
two phases: i) reconnaissance - when the attacker tries to identify

the hypervisor variant of the host; and ii) attack - when the attacker
starts to perform malicious actions against the host hypervisor.

In the attack phase, the attacker adopts a try-and-error approach.

1
We decided to scale the model up to 4N because we found that there are four major

hypervisors (i.e., the target of the attack) used in server environments - Xen, Hyper-V,

ESXi, KVM.

2
Note that some research works may refer to this attack as VM escape [34].

Analysis of VM Migration Scheduling as MTD against insider attacks SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Consequently, the longer the time spent on the same physical host,

the greater the chance of attack success. Besides, once the attacker
reconnoiters the host’s hypervisor, it is possible to continue the try-

and-error approach, ignoring the failed attempts (i.e., the attacker
accumulates knowledge).

2.3 MTD defense
The adopted MTD consists of a time-based VM migration policy

that moves the attacker’s VM between the available physical ma-

chine pools
3
. The MTD goal is to reduce the probability of attack

success through dynamic changes in the attack target (i.e., hypervi-

sor variant of the physical host). In particular, we consider the VM

migration between heterogeneous hypervisors [16].

Focusing on simplifying the MTD deployment, the VM migra-

tion policy follows a circular approach for any of the considered

architectures. The circular approach consists of migrating the VM

from one physical machine (PM) pool to the next physical machine

pool. For example, let us suppose that the attacker is in the PM1

pool in a 3N architecture. We first migrate the VM from the PM1

pool to the PM2 pool. Then, from PM2 to PM3, in the next migration

round. Finally, from PM3 to PM1, restarting the VMmigration cycle.

The adoption of other migration schemes (e.g., random) is one of

our future works.

For illustration purposes, consider the following example. Fig-

ure 2 shows an attack and defense flow in a 2N architecture. The

Stage 1 is the initial state. We suppose that the VM of the attacker is

in the PM1 pool. After the reconnaissance phase, the attacker starts
the attack phase. The time spent in the attack phase is counted as

attack progress. Then, the VM migration schedule arrives, moving

the VM of the attacker from the PM1 pool to the PM2 pool, thus

starting Stage 2.
In Stage 2, the attacker follows the same approach of Stage

1. As before, the attacker has no accumulated knowledge about

the PM2 pool environment and has to start the attack from the

beginning. Finally, when the schedule for VM migration arrives

again, the VM is moved back to the PM1 pool (Stage 3). In Stage 3,
after reconnaissance, the attacker leverages from the accumulated

knowledge to finish the attack.

We are aware that the detection of an attacker in the environment

is a rather difficult task. Besides, if the attacker is detected, it is more

straightforward to delete the attacker’s VM instead of migrating

it. However, our strategy supposes that the attacker is undetected,
has privacy rights, and has authorized access to a VM. Thus, a

concern may arise on deciding which VMs should follow the MTD

policy. System managers may leverage our tolerance levels results
to select VMs as candidates for MTD deployment based on their

expected runtime. Nevertheless, this MTD deployment may have

a non-negligible impact on system performance and availability.

We studied the availability impact on Section 4.2. The performance

impact is yet to be studied.

The proposed MTD brings benefits as it is easy to use (assuming

that VM migration is a common task in IaaS cloud management).

However, unless we have very frequent migrations, which may

affect VM availability, the attacker will eventually be successful.

3
In other papers (e.g., [33]), this approach is named as Migration-based Dynamic

Platform.

Hopefully, the MTD may provide valuable extra time to enhance

the defensive mechanisms against insider attacks.

PM1 pool

PM1 time

PM1 attack progress

Reconnaissance

phase
Attack phase

PM2 pool

VM migration

PM2 time

PM2 attack progress

PM1 pool

PM1 time

PM1 attack progress

PM2 pool

PM2 time

PM2 attack progress

PM1 pool

PM1 time

PM1 attack progress

PM2 pool

PM2 time

PM2 attack progress

Attack success Attacker’s VM

Stage 1

Stage 2

Stage 3

Figure 2: Example of attack and defense flow - 2N architec-
ture

3 MODEL
The proposed model has two submodels: a) Clock model and b)

Systemmodel (see Figure 3). The models interact through the guard

functions described in Table 1
4
. For simplicity, this section presents

only the models related to the 2N architecture. Nevertheless, we

consider up to the 4N architecture in our evaluations.We emphasize

that each architecture has its model. All the models follow the same

approach used in the 2N architecture model. The only difference is

that the other architectures 3N and 4N have three and four physical

machine pools, respectively. 1N architecture has only one physical

machine pool and does not support VM migration. Nevertheless,

we added the results from 1N architecture as baseline results.

Table 1: Guard functions

Guard Enabling function
𝐺𝑓 1 (#VMMigPM1_2>0) OR (#VMMigPM2_1>0)

𝐺𝑓 2 (#Schedule>0)

The Clock model represents the system component responsible

for triggering VM migration. To assure that the model represents

the predefined VMmigration scheduling, transition Trigger adopts
a deterministic firing delay. Its firing delay is the configured delay

4
Guard functions are Boolean expressions evaluated based on the net current marking.

They disable the associated transition when the boolean expression returns false.
(#P>0) expression returns true if the number of tokens in the place P is greater than
zero (otherwise, it returns false).

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Torquato et al.

Figure 3: SRN model for probability of attack success evaluation (2N architecture)

between VMmigrations. Thus, transition Trigger firing represents
that the system reached the time interval for VM migration. Tran-

sition Trigger firing removes a token from place Counting to the

place Schedule, thus activating guard function 𝐺𝑓 2.

𝐺𝑓 2 enables the firing of transitions related to VMmigration (i.e.,

MigPM1_2_1, MigPM1_2_2, MigPM2_1_1 and MigPM2_1_2). These
transitions firing put a token in place VMMigPM1_2 or place VM-
MigPM2_1, indicating that the VM migration is in progress. In this

situation, the system clock starts the time counting for the next mi-

gration (i.e., transition ResetClock firing). Transition ResetClock
firing moves the token from place Schedule to the place Counting
restarting the cycle of Clock model.

The System model in Figure 3 represents the 2N architecture.

Transitions and places related to the PM1 pool have an explicit

mention to PM1. Transitions and places related to the PM2 pool

have PM2 in their names.

In this model, we consider that the attacker’s VM is initially in the

PM1 pool (place Arrival_PM1 with one token). From this state, we

have two possibilities. The first is when the VM migration schedule

arrives before the attacker finishes the reconnaissance phase. In this

case, obeying 𝐺𝑓 2, the token from place Arrival_PM1 is moved

to place VMMigPM1_2 through transition MigPM1_2_1 firing. The

second possibility is that the attacker finishes the reconnaissance
phase (transition Recon_PM1 firing). Transition Recon_PM1 firing

removes the token from pĺace Arrival_PM1 and puts a token in

place Attack_PM1.
Following the same approach of our previous work [27], we

model the attack phase using a four-phase Erlang sub-net. The

Erlang sub-net has the immediate transition AtkPM1, transition
AtkPM1_Prog, and the places AtkPM1_Remaining and AtkPM1_Sta-
tus. There are two reasons for this choice. First, we need to preserve
the attack progress even after a VM migration. Thus, we need a

model with a enabling memory policy [18]. The Erlang sub-net

(specifically the place AtkPM1_Status) serves as a memory of the

attack progress. Secondly, a four-phase Erlang sub-net can repre-

sent an Increasing Failure Rate (IFR) [29]. As mentioned before,

the attacker adopts a try-and-error approach. Thus, the attack suc-

cess probability increases as long as the attacker stays in a specific

physical machine pool. Therefore, we approximate this increas-

ing probability using the four-phase Erlang sub-net. It is worth

highlighting that previous works also adopted hypoexponential

distributions to represent IFR [17][26].

Transition AtkPM1 immediately fires when place Attack_PM1
receives a token. Transition AtkPM1 firing swaps5 the token in the

place Attack_PM1, and puts four tokens (representing the number

of phases) in the place AtkPM1_Remaining. This event represents
the start of the attack phase. Each transition AtkPM1_Prog firing

represents that the attack is progressing. Note that the transition

AtkPM1_Prog is only enabled when we have tokens in the place

AtkPM1_Remaining (representing that the attack phase is not over)

and place Attack_PM1 (indicating that the VM of the attacker is

still in the PM1 pool). Transition AtkPM1_Prog moves tokens from

place AtkPM1_Remaining to place AtkPM1_Status.
Transition AtkPM1_Success immediately fires when the place

AtkPM1_Status receives the fourth token. Transition AtkPM1_-
Success firing collects four tokens from place AtkPM1_Status and
puts one token in the place PM1_Compromised. This event denotes
that the attacker successfully compromised a physical machine in

the PM1 pool.

We put an inhibitor arc
6
from place PM1_Compromised to transi-

tion AtkPM1. This inhibitor arc denotes that the attacker does not

5
Receives and gives back

6
An arc terminating in a circle instead of an arrowhead

Analysis of VM Migration Scheduling as MTD against insider attacks SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

need to pass the try-and-error approach again once the system is

compromised.

Timely VM migrations delay the attack success. Lets suppose

that the attacker is on the attack phase in PM1 pool (place At-
tack_PM1 with one token). As transition MigPM1_2_1, the transi-
tion MigPM1_2_2 also has embedded guard function𝐺𝑓 2. Therefore,

when the system reaches the time for VM migration, it moves the

attacker’s VM from a physical machine of PM1 pool to a physical

machine in the PM2 pool. This VM migration interrupts the at-
tack phase progress. Transition MigPM1_2_2 firing moves the token

from place Attack_PM1 to the place VMMigPM1_2. After the VM

migration downtime (transition Mig_Downtime), the VM arrives in

the PM2 pool (place Arrival_PM2 receives a token from transition

Mig_Downtime firing).
The attacking approach in the PM2 pool follows the same pro-

cedure described above. When the system triggers another VM

migration, the attacker’s VM is moved back to the PM1 pool. The

attacker can leverage the obtained knowledge from his first at-

tempts in the previous attack phase in the PM1 pool.

In the context of this paper, we used the proposed model to

evaluate VM migration as MTD. However, the approach used in

the model design may be valuable to evaluate other related MTD

mechanisms. For example, the use of IP address shuffling against a

persistent attacker.

Metrics computation. The main metric of interest is the proba-
bility of attack success. Assuming a 2N architecture, we compute

this metric by observing the transient probability of token pres-

ence in place PM1_Compromised or place PM2_Compromised. We

compute availability by observing the steady-state probability of

token presence in any of the following places: Arrival_PM1, At-
tack_PM1, Arrival_PM2, or Attack_PM2. Note that this evaluation
only covers the availability impacts due to VM migration schedul-

ing. Other dependability events as failures and repairs are out of

the scope.

4 CASE STUDIES
This section presents two case studies. The first one estimates the

probability of attack success in each proposed system architecture

(Section 4.1). The second shows the results considering different

VM migration scheduling policies (Section 4.2).

We used the TimeNet tool [35] for model design and evaluation.

Table 2 presents the default values used for our evaluations. We

obtained these values from the recent papers [26][6]. Note that

these values are only for reference and should be adapted whenever

measurement-based results are available. Nevertheless, we find

these values reasonable to represent the considered threat model

and MTD defense based on previous papers published in reputed

journals. We discuss this topic more in Section 6.

4.1 CS#1 - Varying number of available
physical machine pools

RQ1: What is the reduction in the probability of attack success when
using different system architectures?

Table 2: Parameters used in the timed transitions

Transition Description Delay
Trigger Time for VM migration 30 minutes

Recon_PM1, Re-
con_PM2

Reconnaissance phase 30 minutes

AtkPM1_Prog,
AtkPM2_Prog

Attack phase (Erlang) 6 hours*

Mig_Downtime,
Mig_Down-
time1

VM migration down-

time

4 seconds

* As we have four Erlang phases, attack phase total

delay is of 24 hours

Observing the threat model and proposed MTD (Section 2.1),

we can conclude that the higher is the number of available phys-

ical machine pools, the longer is the delay for an attack success.

However, this evaluation aims to quantify the reduction of attack

success when using the proposed system architectures. In practice,

this case study has two goals. The first is to evaluate how long the

system survives the attack. The second is to quantify the benefits

of enlarging the architecture.

Figure 4 presents the results of the probability of attack success

in different architectures. These results comprise the first fifteen

days (360 hours) of attacker presence in the environment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

P
ro

ba
bi

lit
y

of
 a

tt
ac

k
su

cc
es

s

Time (hours)

Baseline 2N 3N 4N

Figure 4: Probability of attack success - varying number of
available physical machine pools

The results from the architectures with MTD (i.e, 2N, 3N, and 4N)

are significant better than the results from the baseline architecture

(i.e., 1N). As expected, the enlargement of the system architecture

produces a flattening effect in the probability of attack success curve.

However, the difference between the architectures with MTD is

less prominent.

For comparison purposes, Table 3 presents when the system

reaches 1%, 50%, and 90% of probability of attack success (i.e., toler-
ance levels) in each proposed architecture. These findings may help

to perceive the benefits of MTD deployment. The probability of an

attack success decays significantly in the MTD-enabled environ-

ment. We noticed that the smaller architecture with MTD (2N) is

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Torquato et al.

about three times more secure7 than the baseline architecture in

the first week of attack presence (up to 168 hours).

Table 3: When the system reaches probability of attack suc-
cess of 1%, 50%, and 90% (tolerance levels)

Arch. 1% 50% 90%
Baseline 6 hours 23 hours 41 hours

2N 25 hours 106 hours 182 hours

3N 34 hours 135 hours 224 hours

4N 41 hours 161 hours 263 hours

RQ3: What is the time required for the system to reach a specific
attack success probability considering different architectures and VM

migration policies?
The results presented in Table 3 also provide a partial answer for

RQ3. Depending on the business model, system managers may be

more or less concerned about security. Thus, the system manager

may define appropriated tolerance levels of probability of attack

success for their respective environments. For example, in a busi-

ness with a high associated security risk, the system manager may

set the tolerance level at 1%. In this situation, assuming our evalua-

tion’s scope, the system should flag the VMs with expected runtime

above 6 hours as candidates for MTD deployment. After further

verification of other relevant aspects (e.g., verification of what the

client started the VM), the system manager can decide whether or

not such a VM should follow the VM migration scheduling.

Figure 5 presents the results of the reduction in the probability

of attack success. This reduction is the difference between the prob-

ability of attack success of each MTD architecture (2N, 3N, and 4N)

and the baseline architecture. As expected, 4N architecture pro-

vides a more significant reduction than the others. The interesting

conclusion is that, after fifteen days (i.e., 360 hours) of attacker pres-

ence in the environment, the reduction is less than 1%. Therefore,

in scenarios with VMs that impose long-running execution times

(above fifteen days), a 4N architecture is not enough to reduce the

probability of attack success. In such scenarios, we encourage the

system managers to apply alternative policies to mitigate the vul-

nerabilities related to insider attack. The deployment of periodical

software rejuvenation and routines to clean up the hypervisor may

improve system security in such scenarios.

4.2 CS#2 - Varying VM migration schedule - 4N
architecture

RQ2: What is the availability and probability of attack success
impact due to different VM migration scheduling policies?

In the previous case study, we noticed security improvements

due to the MTD deployment. However, as the MTD is based on

VM migration scheduling, MTD policies with frequent VM migra-

tions may also affect system availability. Clark et al. [8] show that,

even in live migration mode, each VM migration has an associated

downtime. In some cases, the accumulated VMmigration downtime

may be unacceptable. Thus, it is essential to evaluate different VM

migration schedules to verify MTD policies’ availability impact.

7
By secure we mean with lower probability of attack success.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

Re
du

ct
io

n
of

 p
ro

b.
 o

f
at

ta
ck

 s
uc

ce
ss

(%
)

Time (hours)

2N 3N 4N

Figure 5: Reduction of probability of attack success due to
the number of available physical machine pools

The threat model and MTD defense impose a tradeoff between

security and availability. Therefore, more frequent migrations may

delay the attack success longer but also imposes more system down-

time. Moreover, less frequent migrations may reduce the system

downtime due to MTD policy, increasing the probability of attack

success.

Figure 6 presents the probability of attack success results for

different VM migration trigger intervals. Figure 7 presents the

reduction due to each VM migration scheduling policy. Due to

space limitations, this evaluation only presents the results of 4N
architecture.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350P
ro

ba
bi

lit
y

of
 a

tt
ac

k
su

cc
es

s

Time (hours)

Baseline
30 min

1 h
6 h

12 h
24 h

Figure 6: Probability of attack success - varying VM migra-
tion trigger - 4N architecture

As expected, more frequentmigrations (e.g., VMmigration sched-

uling of 30 minutes and 1 hour) produce a more noticeable reduction

in the probability of attack success. In the first hours of attacker

presence, less frequent migration policies provide no significant

decrease in attack success probability. Besides that, Figure 7 shows

that less frequent migrations produce only a slight reduction effect

on the probability of attack success.

System managers may be interested in two aspects of the VM

migration scheduling when designing the MTD policy: i) System

Analysis of VM Migration Scheduling as MTD against insider attacks SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Table 4: Tolerance levels and system unavailability - Different VM migration schedules - 4N architecture

Trigger TL 1% TL 50% TL 90% Availability considering
VM migrations

Downtime in the first fifteen days
(due to VM migrations)

30 minutes 41 hours 161 hours 263 hours 0.997778 48 minutes

1 hour 24 hours 94 hours 152 hours 0.998889 24 minutes

6 hours 6 hours 54 hours 89 hours 0.999815 4 minutes

12 hours 6 hours 52 hours 83 hours 0.999907 2 minutes

24 hours 6 hours 23 hours 71 hours 0.999954 1 minute

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

Re
du

ct
io

n
of

 p
ro

b.
 o

f
at

ta
ck

 s
uc

ce
ss

(%
)

Time (hours)

30 min 1 h 6 h 12 h 24 h

Figure 7: Reduction of probability of attack success due to
the variation on VMmigration trigger

availability, to understand how the VM migration scheduling af-

fects system downtime; and ii) when does the system reach the

tolerance level (TL) of the probability of attack success. We sum-

marized these results in Table 4.

In systems with tolerance level of 1%, the managers may adopt

MTD policies with more frequent migrations (e.g., VM migration

trigger of 30 minutes or 1 hour). Because the other ones provide no
security improvement when compared to the baseline results.

Availability results reveal a significant system downtime in sce-

narios with frequent migrations. On the other hand, the downtime

in the first fifteen days (i.e., 360 hours) in below 4 minutes when

using VM trigger above 6 hours. However, we highlight that the
downtime of each VM migration is usually short [8]. The VM mem-

ory state is preserved during VM migration. Therefore, VM migra-

tion downtime may produce a more severe impact in systems with

an intense load of external requests. In scenarios without a network

buffer, these requests will be lost due to environment unavailability

during migrations. Nevertheless, there may be scenarios where

this downtime is acceptable (e.g., systems that do not require high

availability).

5 VALIDATIONWITH SIMULATION RESULTS
Following the same idea of Connell et. al. [9], we implemented a

simulation environment using SimPy
8
. SimPy provides a simula-

tion framework using standard Python language. We used SimPy

to simulate the attack progress and the interruptions due to VM

8
Available at: https://simpy.readthedocs.io/en/latest/

migration occurrence. We implemented the simulation script by

hand (i.e., without using automation or conversion frameworks).

The proposed model guided the simulation implementation, where

we used variables to store the system state and events to represent

the attack progress and VM migration.

Figure 8 presents: i) the comparison of model (black line) and

simulation (gray dashed line) results and ii) error - difference be-
tween the model and simulation results. The simulation results

dotted lines represent the 95% confidence interval. The results be-

low are only from the 2N architecture. However, the comparisons

between simulation and model results for the other architectures

have similar results.

The error is higher in scenarios with more frequent VM migra-

tions. In scenarios with more frequent VM migrations, the simu-

lation environment has to generate more events leading to more

accumulated errors. Nevertheless, in scenarios with less frequent

VM migrations, the error results are relatively low.

The error results remains under 0.2 in all considered scenarios

of VM migration scheduling. The maximum error for the policy 30
minutes is 0.151552, and the maximum error for the policy 1 hour
is 0.051828. For all the other scenarios, the maximum error is about
0.01. Figures 8(e), 8(g), and 8(i) show that the simulation results are

nearly the same of the model results.

6 THREATS TO VALIDITY AND LIMITATIONS
Model-based evaluations are less accurate than measurement-based
evaluations [14]. However, model-based evaluation suits our needs

as we aim to evaluate different architectures, which may be a signif-

icant challenge for measurement-based evaluation. Besides that, as

presented in [25] and [20], model-based evaluation is helpful when

combining security and dependability metrics. As our research line

evaluates the probability of attack success and availability, Stochas-

tic Reward Net models seem to be a reasonable evaluation method.

The presented availability evaluation is limited. A more compre-

hensive availability evaluation of VM migration effects is needed

to understand a VM migration scheduling policy’s real impacts.

Two factors are missing in our evaluation. Firstly, other relevant

dependability events as failures, crashes, and software aging. Sec-

ondly, the VM migration failure probability. Despite these aspects’

relevance, note that this work’s focus is the security evaluation (i.e.,

probability of attack success evaluation). The inclusion of other

relevant aspects of VM migration scheduling may raise difficul-

ties (e.g., largeness [30]) in the model evaluation. An approach to

address this problem in the future is hierarchical compositions or

interacting SRN models [30].

https://simpy.readthedocs.io/en/latest/

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Torquato et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350P
ro

ba
bi

lit
y

of
 a

tt
ac

k
su

cc
es

s

Time (hours)

Model
Simulation

(a) Trigger = 30 min

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

E
rr

or

Time (hours)

(b) Trigger = 30 min (error)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350P
ro

ba
bi

lit
y

of
 a

tt
ac

k
su

cc
es

s

Time (hours)

Model
Simulation

(c) Trigger = 1 h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

E
rr

or

Time (hours)

(d) Trigger = 1 h (error)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350P
ro

ba
bi

lit
y

of
 a

tt
ac

k
su

cc
es

s

Time (hours)

Model
Simulation

(e) Trigger = 6 h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

E
rr

or

Time (hours)

(f) Trigger = 6 h (error)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350P
ro

ba
bi

lit
y

of
 a

tt
ac

k
su

cc
es

s

Time (hours)

Model
Simulation

(g) Trigger = 12 h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

E
rr

or

Time (hours)

(h) Trigger = 12 h (error)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350P
ro

ba
bi

lit
y

of
 a

tt
ac

k
su

cc
es

s

Time (hours)

Model
Simulation

(i) Trigger = 24 h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

E
rr

or

Time (hours)

(j) Trigger = 24 h (error)

Figure 8: Model and simulation results - 2N architecture

We assumed default values for the attack and reconnaissance
phases duration. In the best scenario, we should have obtained

these parameters through experimentation. However, such experi-

mentation has a non-negligible associated cost. An approach is to

hire a red team [10] to test an real testbed. We decided to follow a

lower cost approach by collecting the parameters from published

papers. We noticed that similar approaches were used in several

papers of model-based security evaluations [19][32][1].

7 RELATEDWORKS
Mendonça et al. [19] presented a model for performability evalu-

ation of a system with a time-based Moving Target Defense. The

proposed MTD leverages Software-Defined Networking (SDN) to

perform the environment modifications. The authors neglect the

security improvement assessment due to MTD deployment. Un-

like their work, we focus on the security evaluation regarding the

probability of attack success.

Chen et al. [6] presented an SRN model for job finish time eval-

uation of a system with MTD based on VM Migration. The paper

offered relevant insights into our model design and parameteri-

zation. The presented results focus on the job finish time under

different conditions. Unlike their work, we focused on evaluating

the MTD effectiveness under different architectures and VM migra-

tion scheduling policies. By effectiveness, we mean a reduction in

the probability of attack success.

Cai et al. [4] presented a Petri Net (PN)model forMTD evaluation

and comparison. Their research was one of the first efforts to use

PN in the context of Moving Target Defense. Their work focuses on

the MTD deployment in a Web Server. Their metrics of interest are

related to performance (e.g., the average delay of service, system

throughput, and operational efficiency). The authors decided to

present their results showing the aspects of the model (e.g., number

of tokens on a place, throughput of timed transitions, and sojourn

times for tangible states). By adopting these results, it is possible

to extract the desired metrics. Unlike this approach, we decided to

deliver the results directly, instead of showing the model’s aspects.

We hope that this approach reduces the obstacles to understanding

our results. Finally, different from the authors, we present a security

and availability evaluation instead of a performance evaluation.

Connell et al. [9] presented comprehensive models for avail-

ability, security, and performance evaluation of an environment

with MTD. As our work, the authors also covered the probability

of attack success and availability in their evaluations. However,

we select a different modeling strategy. First, we explicitly used a

multi-stage attack as our threat model. Furthermore, we decided

to use an Erlang sub-net to represent the IFR related to the attack

phase.

Chang et al. [33] provided an SRN model for job completion time

evaluation in an MTD system that considers a virtualized platform

with Software DefinedNetworking capabilities. They also computed

the availability and probability of attack success. The main goal of

their paper is to investigate the MTD impact on job protection and

performance. The significant difference between our approach and

theirs is the threat model. In their work, they consider the attacker

to select the attack targets without accumulating knowledge. In

their threat model, the attacker is trying to compromise a specific

job. Besides, different from their work, we also present the tolerance
levels results, aiming to support managers’ decision-making.

Alavizadeh et al. [2] provided models for evaluating Shuffle and

Diversity MTD techniques in cloud computing environments. The

authors consider the probability of attack success but neglect avail-

ability evaluation. Besides that, their models adopt Hierarchical

Attack Representation Models (HARM). HARMmodels focus on the

security evaluation. Unlike their approach, we decided to use SRN

models, as they allow us to compute dependability and security

metrics using the same model.

Analysis of VM Migration Scheduling as MTD against insider attacks SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

8 CONCLUSIONS AND FUTUREWORKS
This paper presented an SRN model to evaluate the probability

of attack success and an MTD system’s availability based on VM

migration scheduling policies. We showed a set of case studies to

exercise our model. The obtained results show a tradeoff between

the probability of attack success and availability when using the

proposed MTD. The model is validated against simulation results.

Using the proposed tolerance levels, it is possible to select VMs

as candidates for MTD deployment. Moreover, the set of results

quantify the benefit of enlarging system architectures. In some

scenarios, the benefit of using large architectures is negligible.

As future works, we intend to investigate the tradeoffs between

security, availability, and performability when applying MTD based

on VM migration scheduling. Besides that, we aim to expand the

evaluations for other scenarios and migration schemes (e.g., more

prominent architectures and different VMmigration scheduling). Fi-

nally, we intend to analyze scenarios with different attack duration

phases duration.

ACKNOWLEDGMENTS
This work has been partially supported by Portuguese Founda-

tion for Science and Technology (FCT), through the PhD grant

SFRH/BD/146181/2019, within the scope of the project CISUC -

UID/CEC/00326/2020. This work is also funded by the European

Social Fund, through the Regional Operational Program Centro

2020.

This work also received support from AIDA: (Adaptive, Intel-

ligent and Distributed Assurance Platform) project, funded by

Operational Program for Competitiveness and Internationaliza-

tion (COMPETE 2020) and FCT (under CMU Portugal Program)

through grant POCI-01-0247-FEDER-045907. And, from project

TalkConnect funded by COMPETE 2020 trough grant POCI-01-
0247-FEDER-039676.

REFERENCES
[1] Hooman Alavizadeh, Jin B Hong, Julian Jang-Jaccard, and Dong Seong Kim. 2018.

Comprehensive security assessment of combined MTD techniques for the cloud.

In Proceedings of the 5th ACM Workshop on Moving Target Defense. 11–20.
[2] Hooman Alavizadeh, Dong Seong Kim, and Julian Jang-Jaccard. 2019. Model-

based evaluation of combinations of Shuffle and Diversity MTD techniques on

the cloud. Future Generation Computer Systems (2019).
[3] Jing Bai, Xiaolin Chang, Fumio Machida, Kishor S Trivedi, and Zhen Han. 2020.

Analyzing Software Rejuvenation Techniques in a Virtualized System: Service

Provider and User Views. IEEE Access 8 (2020), 6448–6459.
[4] Guilin Cai, Baosheng Wang, Yuebin Luo, and Wei Hu. 2016. A model for eval-

uating and comparing moving target defense techniques based on generalized

stochastic Petri Net. In Conference on Advanced Computer Architecture. Springer,
184–197.

[5] Samrat Chatterjee, Mahantesh Halappanavar, Ramakrishna Tipireddy, Matthew

Oster, and Sudip Saha. 2015. Quantifying mixed uncertainties in cyber attacker

payoffs. In 2015 IEEE International Symposium on Technologies for Homeland
Security (HST). IEEE, 1–6.

[6] Zhi Chen, Xiaolin Chang, Zhen Han, and Yang Yang. 2020. Numerical Evaluation

of Job Finish Time Under MTD Environment. IEEE Access 8 (2020), 11437–11446.
[7] Jin-Hee Cho, Dilli P Sharma, Hooman Alavizadeh, Seunghyun Yoon, Noam Ben-

Asher, Terrence J Moore, Dong Seong Kim, Hyuk Lim, and Frederica F Nelson.

2020. Toward proactive, adaptive defense: A survey on moving target defense.

IEEE Communications Surveys & Tutorials 22, 1 (2020), 709–745.
[8] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-

tian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live migration of virtual

machines. In Proceedings of the 2nd conference on Symposium on Networked Sys-
tems Design & Implementation-Volume 2. 273–286.

[9] Warren Connell, Daniel A Menasce, and Massimiliano Albanese. 2018. Perfor-

mance modeling of moving target defenses with reconfiguration limits. IEEE

Transactions on Dependable and Secure Computing (2018).

[10] Yuri Diogenes and Erdal Ozkaya. 2018. Cybersecurity??? Attack and Defense
Strategies: Infrastructure security with Red Team and Blue Team tactics. Packt

Publishing Ltd.

[11] Ghanshyam Gagged and SM Jaisakthi. 2020. Overview on Security Concerns

Associated in Cloud Computing. In Smart Intelligent Computing and Applications.
Springer, 85–94.

[12] Chaima Ghribi, Makhlouf Hadji, and Djamal Zeghlache. 2013. Energy efficient

vm scheduling for cloud data centers: Exact allocation and migration algorithms.

In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing. IEEE, 671–678.

[13] Jinhua Hu, Jianhua Gu, Guofei Sun, and Tianhai Zhao. 2010. A scheduling strategy

on load balancing of virtual machine resources in cloud computing environment.

In 2010 3rd International symposium on parallel architectures, algorithms and
programming. IEEE, 89–96.

[14] Raj Jain. 1990. The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling. John Wiley & Sons.

[15] Sushil Jajodia, Anup K Ghosh, Vipin Swarup, Cliff Wang, and X Sean Wang. 2011.

Moving target defense: creating asymmetric uncertainty for cyber threats. Vol. 54.
Springer Science & Business Media.

[16] Pengcheng Liu, Ziye Yang, Xiang Song, Yixun Zhou, Haibo Chen, and Binyu

Zang. 2008. Heterogeneous live migration of virtual machines. In International
Workshop on Virtualization Technology (IWVT’08).

[17] Fumio Machida, Dong Seong Kim, and Kishor S Trivedi. 2013. Modeling and

analysis of software rejuvenation in a server virtualized system with live VM

migration. Performance Evaluation 70, 3 (2013), 212–230.

[18] M Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli, and

Giuliana Franceschinis. 1998. Modelling with generalized stochastic Petri nets.

ACM SIGMETRICS performance evaluation review 26, 2 (1998), 2.

[19] Júlio Mendonça, Jin-Hee Cho, Terrence J Moore, Frederica F Nelson, Hyuk Lim,

Armin Zimmermann, and Dong Seong Kim. 2020. Performability analysis of

services in a software-defined networking adopting time-based moving target

defense mechanisms. In Proceedings of the 35th Annual ACM Symposium on
Applied Computing. 1180–1189.

[20] Tuan Anh Nguyen, Dugki Min, and Eunmi Choi. 2020. A Hierarchical Modeling

and Analysis Framework for Availability and Security Quantification of IoT

Infrastructures. Electronics 9, 1 (2020), 155.
[21] Department of Homeland Security. 2020. Moving Target Defense. https:

//www.dhs.gov/science-and-technology/csd-mtd

[22] Terry Penner and Mina Guirguis. 2017. Combating the bandits in the cloud: A

moving target defense approach. In 2017 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 411–420.

[23] Sailik Sengupta, Ankur Chowdhary, Abdulhakim Sabur, Adel Alshamrani, Dijiang

Huang, and Subbarao Kambhampati. 2020. A survey of moving target defenses

for network security. IEEE Communications Surveys & Tutorials (2020).
[24] Hamed Tabrizchi and Marjan Kuchaki Rafsanjani. 2020. A survey on security

challenges in cloud computing: issues, threats, and solutions. The Journal of
Supercomputing (2020), 1–40.

[25] Matheus Torquato, Paulo Maciel, and Marco Vieira. 2019. AModel for Availability

and Security Risk Evaluation for Systems With VMM Rejuvenation Enabled by

VM Migration Scheduling. IEEE Access 7 (2019), 138315–138326.
[26] Matheus Torquato, Paulo Maciel, and Marco Vieira. 2020. Availability and reli-

ability modeling of VM migration as rejuvenation on a system under varying

workload. Software Quality Journal (2020), 1–25.
[27] Matheus Torquato, PauloMaciel, andMarco Vieira. 2020. Security andAvailability

Modeling of VM Migration as Moving Target Defense. In 2020 IEEE 25th Pacific
Rim International Symposium on Dependable Computing (PRDC). IEEE.

[28] Matheus Torquato and Marco Vieira. 2020. Moving Target Defense in Cloud

Computing: A Systematic Mapping Study. Computers & Security (2020), 101742.

[29] Kishor Shridharbhai Trivedi. 1982. Probability and statistics with reliability,
queuing, and computer science applications. Vol. 13. Wiley Online Library.

[30] Kishor S Trivedi and Andrea Bobbio. 2017. Reliability and availability engineering:
modeling, analysis, and applications. Cambridge University Press.

[31] HuangxinWang, Fei Li, and Songqing Chen. 2016. Towards cost-effective moving

target defense against ddos and covert channel attacks. In Proceedings of the 2016
ACM Workshop on Moving Target Defense. 15–25.

[32] Yuanzhuo Wang, Jingyuan Li, Kun Meng, Chuang Lin, and Xueqi Cheng. 2013.

Modeling and security analysis of enterprise network using attack–defense

stochastic game Petri nets. Security and Communication Networks 6, 1 (2013),
89–99.

[33] x. Chang, Y. Shi, z. zhang, Z. xu, and K. Trivedi. 2020. Job Completion Time under

Migration-based Dynamic Platform Technique. IEEE Transactions on Services
Computing (2020), 1–1.

[34] Su Zhang. 2012. Deep-diving into an easily-overlooked threat: Inter-VM attacks.
Technical Report. Technical Report). Manhattan, Kansas: Kansas State University.

[35] Armin Zimmermann. 2017. Modelling and performance evaluation with

TimeNET 4.4. In International Conference on Quantitative Evaluation of Systems.
Springer, 300–303.

https://www.dhs.gov/science-and-technology/csd-mtd
https://www.dhs.gov/science-and-technology/csd-mtd

	Abstract
	1 Introduction
	2 Assumptions
	2.1 System Architecture
	2.2 Threat Model
	2.3 MTD defense

	3 Model
	4 Case studies
	4.1 CS#1 - Varying number of available physical machine pools
	4.2 CS#2 - Varying VM migration schedule - 4N architecture

	5 Validation with Simulation Results
	6 Threats to validity and limitations
	7 Related Works
	8 Conclusions and future works
	Acknowledgments
	References

