
Service Orchestration in Fog Environments
Karima Velasquez∗, David Perez Abreu∗, Diogo Gonçalves†,

Luiz Bittencourt†, Marilia Curado∗, Edmundo Monteiro∗, and Edmundo Madeira†
∗CISUC, Department of Informatics Engineering

University of Coimbra, Portugal
Email: {kcastro,dabreu,marilia,edmundo}@dei.uc.pt

†Institute of Computing
University of Campinas, Brazil

Email: diogomg@lrc.ic.unicamp.br, {bit,edmundo}@ic.unicamp.br

Abstract—A new era of automated services has permeated
user’s daily lives thanks to paradigms such as Smart City and
the Internet of Things. This shift from traditional applications
is possible due to the massive amount of heterogeneous devices
that constitute the Internet of Things. To provide newly improved
characteristics to these services, such as mobility support, high
resilience, and low latency, an extension to the Cloud computing
paradigm was created, called Fog computing, which brings
processing and storage resources towards the edge of the network,
in the vicinity of the Internet of Things environment.

This scenario implies a higher complexity level needed to
coordinate available resources and how applications and services
use them. Although some solutions have been proposed for the
Cloud, several characteristics differentiate the Cloud from the
Fog, creating the need for new mechanisms for the coordination
of resources, applications, and services in the Fog.

This paper explains the challenges present in the Fog that
call for new mechanisms to later propose an architecture to
manage resources in the Fog using a hybrid approach. In the
Internet of Things and South-Bound Fog Levels, a distributed
management of applications and services is proposed applying
choreography techniques to enable automated fast decision
making. A centralized approach to orchestrate applications and
services taking advantage of a global knowledge of the resources
available in the network is suggested for the North-Bound Fog
and Cloud Levels.

I. INTRODUCTION

The development of resource demanding applications, and
the proliferation of applications within the context of the Smart
City and Internet of Things (IoT) paradigms lead to the search
of resources that, until certain point, was covered by the use
of the Cloud computing paradigm. The Cloud represents a
logically centralized pool of resources that are exploited by
resource-hungry applications. However, this solution does not
satisfy the needs of every application.

The Fog is an extension of the Cloud that brings resources
closer to the users, to the edge of the network. This paradigm
was conceived to address applications and services that do
not fit well in the Cloud paradigm. Applications that require
characteristics such as low latency, geo-distribution, mobility,
high resilience, and large-scale distributed systems benefit
from the Fog.

The Fog is located in the vicinity of the user, on the frontier
with the IoT, where there is a plethora of heterogeneous
devices that have to work harmoniously to keep the services

running at acceptable Quality of Service (QoS) levels. This
fact calls for the automation of management functions to
deal with the complexity of the scenario. Hence, orchestration
functions are required in order to automate the management
in such a dense, heterogeneous, and complex environment.

Orchestration denotes a single centralized executable
process that coordinates the interaction between different
applications or services. Hence, orchestration uses a
centralized approach to applications and services composition.
Even though different orchestration approaches have been
applied to other scenarios such as the Cloud, the Fog has
particular characteristics, such as its distributed nature, the
heterogeneity of its devices, and the constraints in their
resources.

This calls for a new revision on orchestration solutions
to adapt them to the Fog taking into consideration
its characteristics. Furthermore, a review of decentralized
choreography principles to add to the solutions, in order to
provide dynamism and real-time response at the lower levels
of the infrastructure, is also required. Choreography could be
defined as a global description of the participating applications
and services, which is specified by the exchange of
information, rules of cooperation and agreements among two
or more endpoints; thereby, this strategy uses a decentralized
approach for applications and services composition.

The Supporting the Orchestration of Resilient and
Trustworthy Fog Services (SORTS) project is aimed at
the design, implementation, and development of a service
orchestrator for Fog environments. The service orchestrator
must be capable of maintaining resilience, trustworthiness, and
low latency in a dynamic environment, such as the Fog, and
also guaranteeing acceptable levels of QoS. The choreography
support for the lower levels of the architecture will provide
more dynamism to the proposed solution.

This paper presents an architecture for Fog environments
management, taking into consideration a hybrid approach
including both orchestration and choreography. Orchestration
will be used on the North-Bound Region of the Fog and in
the Cloud, in order to have a global view of the system. On
the other hand, choreography will be used in the South-Bound
Region of the Fog, enabling automated fast responses at the
lower levels.



The contributions of this paper are the following:
1) The proposal of a hybrid approach for orchestration and

choreography of services in the Fog;
2) An architecture for the orchestrator, following the

proposed hybrid approach.
The paper is structured as follows. Section II presents a

subset of related work in the orchestration and choreography
fields. Section III describes the Fog scenario and some
particular challenges that differentiate it from the Cloud.
Section IV depicts the designed architecture for a Fog
orchestrator, following a hybrid approach. Section V offers a
description of a use-case where this orchestrator is framed, the
SORTS project, including an example where the orchestrator
could operate. Finally, Section VI concludes the paper.

II. RELATED WORK

The concept of orchestration frequently comes around when
discussing service oriented architectures, virtualization, and
management of resources in network infrastructures. The
need for automated procedures to deal with different topics
has been explored before in diverse contexts. Zaalouk et
al. [1] propose an orchestrator-based architecture that deals
with security issues using some Software Defined Networking
(SDN) features. The orchestrator is the core of the architecture
proposed by the authors and is in charge of turning on
and off the applications for detecting attacks on the system.
Jaeger [2] describes an architecture using Network Function
Virtualization (NFV) orchestration and management entities
for a hybrid network. Jaeger’s work is focused on extending
the European Telecommunications Standards Institute (ETSI)
NFV reference architecture to manage and orchestrate security
functions.

The migration of Virtual Machines (VM) between different
network domains using an SDN network orchestrator is
addressed by Mayoral et al. [3]. The migration process
involves several steps, including the requests from the
VM, the handling of the active connections, and a final
acknowledgment. To handle the amount of optical resources
assigned to connections, Velasco et al. [4] present the
architecture of an orchestrator that allows elastic data center
operation as well as dynamic establishment and teardown of
inter-datacenters connections.

Vilalta et al. [5] show a hierarchical SDN orchestration
architecture for heterogeneous wireless and optical networks.
The paper also introduces end-to-end provisioning and
recovery procedures in a multi-domain network. Qin et al. [6]
propose an architecture that allows a differentiation of quality
levels for IoT tasks in different wireless scenarios. This
architecture includes an SDN controller that differentiates
flow scheduling over multi-hop heterogeneous ad-hoc paths.
Martini et al. [7] describe an SDN-based orchestrator for
computing and communication resources chaining; authors
also provide an evaluation of different chaining strategies to
compose a pool of resources based on variable load. Wen et
al. [8] introduce a framework to orchestrate Fog computing
environments. This framework manages the composition of

IoT applications, using a genetic-based solution for the
planning.

The works analyzed so far are too focused on dealing with
single issues, such as security, connectivity, and planning.
Additionally, these works do not consider the use of
choreography together with orchestration to provide a dynamic
solution, more compatible with real-time applications.

When using choreography, applications and services have
direct communication among each other without any central
entity coordinating them. Cherrier et al. [9] study the impact of
using orchestration and choreography in Wireless Sensor and
Actuator Networks (WSAN) using mathematical analysis and
also application experiments. Their study shows the benefit
of using choreography because of the shorter paths used
for communication between the nodes and also concerning
network reliability.

Pedraza and Estublier [10] propose to depict applications
as a classic service orchestration extended by annotations
describing where their activities are to be executed. Their
proposal transforms the orchestration into a number of
sub-orchestrations to be deployed on a set of choreography
servers, to deploy and execute later on the application.
This approach shows how to transform an orchestration into
a distributed choreographed solution. Issues of description,
orchestration, and choreography of web services using the Reo
coordination language and constraint automata are addressed
in the work of Meng and Arbab [11]. Based on the constraint
automata, authors use a unifying abstract level allowing
them to determine the relationship between orchestration and
choreography.

Furtado et al. [12] introduce a middleware for choreography
able to automatically deploy and execute services. The
middleware is also responsible for monitoring the service
composition execution and for performing automatic resource
provisioning and service reconfiguration to achieve agreed
QoS levels. The middleware allows for an automated service
composition on which the responsibilities for execution are
shared among the service components without a centralized
point of coordination.

The reviewed works are focused in using orchestration or
choreography (or how to go from one to the other), but not
a hybrid approach. Moreover, most of them (except Wen et
al. [8]) do not even consider the particular characteristics
of Fog environments. Some challenges that ought to be
considered by a Fog orchestrator are depicted in the section
below.

III. FOG ENVIRONMENTS AND ITS CHALLENGES

In recent years there has been a lot of discussion about
Fog networks leading to some confusion regarding the actual
meaning of the term [13]. Initially brought up by Cisco
to describe the paradigm shift from the Cloud towards the
edge of the network [14], nowadays there seems to be a
widely adopted consensus on the concept. The Fog network
extends the Cloud computing paradigm to the edge of the
network, allowing the delivery of a new set of services and



applications that are not entirely fit for the Cloud [15][16], and
providing them particular characteristics including ubiquity,
decentralized management, high resilience, low latency, and
mobility [17][18].

In the edge of the network, devices not only request services
and data from the upper layer (Cloud) but also take care of
some computing tasks (e.g. caching, processing) [19]. These
devices are arranged into groups called Cloudlets [20][21], that
constitute the Fog instances. A Cloudlet is a set of devices
located in the vicinity of the mobile user that are used to
offload applications when user devices are not capable of
executing them [22]. The use of Cloudlets and Fog networks,
in general, has proven to be beneficial in terms of improving
response times and mobile energy consumption, among other
factors [23].

As in the Cloud, there is a need to manage the resources in
the Fog properly. Many solutions have already been developed
with this purpose for the Cloud; but even though the Cloud
and the Fog use the same kind of resources (storage, network,
and processing) and share the need for many of the same
mechanisms (e.g., virtualization), the same procedures can not
be migrated from one environment to the other, given that there
are fundamental differences among them [24][25].

Unlike the Cloud, which is centralized, the Fog aims at
services and applications with distributed deployment [26].
The management of the devices in the micro datacenters
between the Cloud and the underlying IoT is another
requirement for the Fog [27][28]. Fog devices are placed
between smart devices and the Cloud; in this area,
the homogeneity of resources that can be found in the
Cloud disappears to give room for a more heterogeneous
environment, where the characteristics and manufacturers of
the resources vary [29].

Furthermore, the devices in the Fog are resource constrained
in comparison with the resource-rich Cloud counterpart [30];
energy, processing, and storage resources are limited in
the Fog. The Fog also deals with mobility, where mobile
and wireless nodes are commonly less reliable in their
connectivity behavior [31]; this can cause drops in the Quality
of Experience (QoE) or even interruption of the services
provided. Security also has to be analyzed from a new
perspective. Fog devices face threats that are not present in
more controlled Cloud scenarios, regarding both security and
privacy [32]. Additional challenges have been identified [33]
and include dealing with a larger scale of devices and a highly
dynamic environment.

These challenges call for the make-up and development of
new orchestration mechanisms for the Fog. These mechanisms
are to be executed under the control of a well-designed
orchestrator that combines the advantages of centralized and
distributed approaches, for which an architecture is provided
in the following section.

IV. A HYBRID APPROACH FOR SERVICE ORCHESTRATION
IN THE FOG

To cope with the Fog challenges described in Section III
while still guaranteeing an efficient resource management,
a service orchestrator architecture for the Fog using a
hybrid approach combining orchestration and choreography is
proposed in this section.

In order to fully understand the architecture in charge
of the orchestration and choreography of services in the
Fog, a complete review of the general scenario is provided.
The scenario, depicted in Fig. 1, shows three levels: 1)
IoT Level, 2) Fog/Cloudlet Level, and 3) Cloud Level. The
Virtual Clusters are at the IoT Level; these are composed
by the grouping of terminal communication devices (e.g.
smartphones, vehicles) that communicate among each other
and also with the devices belonging to neighboring Virtual
Clusters. This allows the movement of the IoT devices granting
a higher level of freedom for the users. Communication among
Virtual Clusters is achieved by the usage of choreography
mechanisms that allow a quick reaction to possible changes
in the topology (e.g. movement from one Virtual Cluster to
another) as well as providing continuity to the services and
thus higher resilience. Furthermore, this approach also benefits
real-time applications by allowing a faster response among the
devices (shorter paths), without the need of intervention of
another device at a higher level of the infrastructure.

Edge Communication Links and Edge Gateways enable
the communication of the IoT and Fog/Cloudlet Levels. The
Fog/Cloudlet Level is sub-divided in the South-Bound Region
and North-Bound Region. The South-Bound Region, closer
to the IoT, is composed of Fog Instances, or Cloudlets.
Each Fog Instance is a set of Fog Computing Devices, that
allow different actions such as the migration of services
for processing from the IoT devices (code offloading); Fog
Communication Devices, that allow the connection between
the various levels of the infrastructure, and also among the
Fog Instances via Access Points and Base Stations; and Fog
Storage Devices, that enable caching of content for nearby
Fog and IoT users. This last part is also achieved by using
choreography mechanisms.

For the resource management at the North-Bound
Region of the Fog/Cloudlet Level and Cloud Level, an
orchestration approach is used. The communication between
the North-Bound Region of the Fog and the Cloud is done via
the Fog-Cloud Gateways and Fog-Cloud Links. The Cloud
allows a massive amount of resources for heavy computation
and storage requirements, usually known as Cloud Analytics.
By using an orchestration approach at these levels, it is
possible to have a global view of the system.

With the adoption of a hybrid approach, different advantages
are achieved. For instance, it allows independence of the lower
levels for their decision-making processes, which enables a
quicker reaction in case of failures or topology changes, and
also lower response time for time-constrained applications.
Furthermore, in the upper levels, having a global view of



Base
Station

Access
Point

Fog
Instance

Fog 

Computing
Device

Fog
Storage

Edge
Gateways

Edge 

Communication
Links

ChoreographyChoreography Virtual
Cluster

Fog-Cloud
Gateway

Cloud
Gateway

Cloud
Storage

Cloud
Data Centers

Cloud
Analytics

Fog-Cloud 

Communication
Links

Choreography
(Distributed
Management)

Orchestration
(Centralize
Management)

F
o
g
/C
lo
u
d
le
t 
L
ev
el

Io
T

 
L
ev
el

C
lo
u
d

 
L
ev
el

South-Bound
Region

North-Bound
Region

Fog 

Communication
Device

Fig. 1: Logical Network Infrastructure for Service Orchestration

the system allows applying long-term actions aiming at the
optimization of the overall system.

To manage the resources and communication in the
previously described scenario, an orchestrator architecture
is proposed in Figure 2. Overlapped instances of this
architecture ought to be replicated at different levels, namely
at Fog Instances (Fog/Cloudlet Level) and Virtual Clusters
(IoT Level) allowing the implementation of distributed
choreography mechanisms; and at the Cloud Level, where a
single logical instance is also deployed for global orchestration
purposes.

The architecture is composed of different modules. The
Communication Manager controls the communication among
the different orchestrator instances, deployed in Virtual
Clusters, Fog Instances, and the Cloud. The Resource Manager
monitors the resource usage of the various devices, including
which of these resources are being used (and by whom) and
which are available or idle. The Service Discovery module
allows lookups for services and applications that are available
and where is the nearest instance being executed. It also
allows the aggregation or removal of services at any time.
The Security Manager provides different mechanisms for
authentication and privacy, according to the applications and
services requirements.

The Status Monitor supervises the different activities in the
system. It takes the information from the Resource Manager

St
at

us
 M

on
ito

r

Planner
Mechanisms

Re
so

ur
ce

 M
an

ag
er

Se
rv

ice
 D

isc
ov

er
y

Se
cu

rit
y 

M
an

ag
er

Communication Manager

Optimizer
Mechanisms

Fig. 2: Hybrid Orchestrator Architecture

to guarantee that the required QoS and QoE levels previously
agreed by the users are being met. The Planner Mechanisms
schedule the execution of processes throughout the system.
They set up where and when each service and application is
going to be executed.

Finally, the Optimization Mechanisms, only applied at the
upper levels of the infrastructure where a global view is
used, to improve the performance of the system and the
QoS and QoE for users. Both the Planner Mechanisms and



Optimization Mechanisms can be instantiated according to
the particular requirements of the applications and services
running at the Fog Instance or Virtual Cluster. Thus,
resilience-focused mechanisms can be preferred over real-time
or security-focused mechanisms, according to different needs.

This architecture was designed in the frame of the SORTS
project, which is described in the section below.

V. THE SORTS PROJECT

The Supporting the Orchestration of Resilient and
Trustworthy Fog Services (SORTS) project, a cooperation
between Portugal (University of Coimbra) and Brazil
(University of Campinas), aims at the design, implementation,
and evaluation of a service orchestrator for Fog environments,
capable of guaranteeing resilience and trustworthiness for
dynamic services in the Fog. The service orchestrator will have
to take care of the composition of simple service elements (e.g.
storage processing, sensing) into more complex services (e.g.
trip planning) that can satisfy the user requirements in the Fog.

The orchestrator will also have to guarantee agreed levels
of QoS even in the case where the different service elements
are spread over the Fog, which can hamper several processes
such as resource allocation. Also, mechanisms to ensure
low-latency, resilience, and scalability have to be incorporated
as functions of the designed service orchestrator.

Since the Fog can spread over a large geographic area,
the service orchestrator will operate in a loosely coupled
mode, with more real-time demanding functions controlled
by the devices at a Virtual Cluster/IoT Level, following a
choreographic approach, with a set of regions grouped in a
Fog Instances/Cloudlets enabling autonomous operation of the
regions using a choreography approach.

This way, the devices at the IoT and Fog/Cloudlet
(South-Bound Region) Levels cooperate among each other
freely to take low-level autonomic management decisions
(micro-management); while at the Fog/Cloudlet (North-Bound
Region) and Cloud Levels, a larger time scale management
will take place (macro-management).

Under this approach, the IoT and Fog/Cloudlet
(South-Bound Region) Levels will control events such
as load variation, topology changes, delay variations,
and real-time management; whereas the Fog/Cloudlet
(North-Bound Region) and Cloud Levels will tackle the
global optimal for the group of regions by keeping a global
view.

The SORTS hybrid orchestration approach described thus
far allows the execution of complex management actions
required in Fog environments. To demonstrate its usage, an
example based on Smart City mobility support is provided
below.

A. An Architecture Instance for Mobility Support

The orchestrator presented in Section IV can be instantiated
according to the requirements of the applications being
executed in the different levels of the infrastructure. The
orchestrators modules can be adapted to diverse needs

to provide optimized solutions. This section describes the
instantiation of the orchestrator to offer mobility support in
a Smart City scenario.

Mobility
Optimizer

St
at

us
 M

on
ito

r

Pl
an

ne
r

Re
so

ur
ce

 M
an

ag
er

Se
rv

ice
 D

isc
ov

er
y

Se
cu

rit
y 

M
an

ag
er

Code Partion

Benchmark
Monitor

Mobility
Predictor

Path
Calculation

Communication Manager

Fig. 3: Hybrid Orchestrator Architecture: An Instance for
Mobility Support

Given the mobility of many devices in the IoT (e.g.
connected vehicles, cyclists, and pedestrians), the Fog
orchestrator must manage the Fog resources according to
the demand required by such applications. Figure 3 shows
the orchestrator instance that handles the mobility use-case.
The Status Monitor, Resource Manager, Service Discovery,
Security Manager, and Communication Manager modules
remain the same, with the functionalities described in
Section IV. The Optimizer is refined with mechanisms
specifically focused on mobility as well as the Planner.

For this orchestrator instance, the Planner is composed
of four specific mechanisms to support mobility. The
Mobility Predictor deals with the precalculation of estimation
regarding user mobility patterns. This estimation feeds the
Path Calculation mechanisms that determine the best route
between the mobile devices and Fog Instances/Cloudlets. The
Benchmark Monitor works together with the Status Monitor
to decide if the task offloading is actually needed, and if so,
determines the optimal location for the services that belong
to an application. To achieve this, the Benchmark Monitor
evaluates the available resources both in the device and in
the Fog Instances and also the expected QoS and QoE of
applications and services. The Code Partition mechanisms
determine which services are to be offloaded to the Fog
Instance/Cloudlet.

B. Interaction between the Elements of the Architecture

To understand how these mechanisms work together, a
sequence diagram is shown in Figure 4. Three actors are
involved in this example: the Status Monitor, the Planner,
and the VM/Container. The locally executed applications and
services are monitored, and according to the resource demand
can be migrated to a specific Fog Instance that guarantees
the QoS and QoE requirements of applications and services.
Once a request is received, the Planner must determine where
the application (or parts of it) is going to be executed. The
Status Monitor searches for information about the user device
to determine if the application can be executed locally, or on



the other hand, if it must identify the nearest Fog Instance
that represents the best option for the user. According to
the resource demand from the applications and the resources
available in the Fog Instance, the Planner should select which
tasks will have to be migrated from the IoT device to the Fog.

code_offloading

Status_Monitor VM/Container

request_status

device_info

cloudlet_info

reply_status

Benchmarck 
Monitor

Mobility
Predictor

Planner

code_offloading_ack

Path
Calculation

Code
Partion

check_status

Fig. 4: Sequence Diagram: Code Offloading in a Mobility
Scenario

Given the mobility of the devices, the application should
preferably be executed in the Fog Instances that offer the best
conditions to the user while he is moving. In this context,
it can be required to migrate an application from one Fog
Instance to another to offer the best execution conditions while
the device is in movement. The planner can select the Fog
instances to act in the path. In the selection process, the
Planner uses the device mobility data (provided by the Status
Monitor), trajectory predictions (from the Mobility Predictor
mechanisms) and data obtained using choreography from other
Fog Instances (e.g. location and available resources).

From a set of preselected Fog Instances, the Planner can
define which Fog Instance best fits the user in a specific point
of its future path (Path Calculation). Another functionality
that can be inferred from such path is the possibility to
minimize the amount of migration among the Fog Instances.
The applications can be distributed between the Fog Instances
that will be available for longer within the device’s route,
before needing a new migration. The next step is offloading
the code to the VM located on the selected Fog Instance.

In a normal flow of execution, the Status Monitor
will oversee the methods of applications running in a

VM/Container. The Planner will keep in touch with the
application in order to identify the methods that can be
migrated to the Fog without compromising its execution. The
Status Monitor will oversee, in real-time, the resource demand
for each method selected by the Planner. The data about
the application resource demand and the available resources,
both locally and remotely, is evaluated by the Status Monitor
module. If the resources available in the device satisfy the
application demands, then it will be executed locally. On
the other hand, if the application requires a vast amount
of resources and the Fog Instance with which the device
already established a connection offers enough resources, the
Planner can conclude that offloading the application is the
most beneficial procedure to the user.

After the process of offloading is completed, the application
is executed in the Fog Instance inside of a VM/Container as
long as this state is the most beneficial for the application. The
Status Monitor registers data from the connection quality and
idle resources in neighboring Fog Instances. This data helps
the Planner to select the best location to place the application
given the user movement in case of a needed migration.

This example is focused on the mobility support, as the other
modules inside the orchestrator (e.g. Communication Manager
and Resource Manager) will continue to carry out their basic
tasks. Additionally, this example illustrates how easily the
orchestrator can be adapted to handle specific use-cases inside
a scenario as complex as a Smart City.

VI. CONCLUSION

The development and deployment of IoT devices enable the
proliferation of new services and applications. Some of these
applications require more resources (e.g. processing, storage)
than what the IoT devices can provide. The Cloud paradigm
offers a solution for some of these applications, but other
applications and services are not particularly fit for the Cloud.
The Fog extends the idea of the Cloud bringing resources to
the edge of the network, closer to the final user, enabling lower
latency levels, location awareness, and mobility support among
other advantages.

The combination of IoT and Fog encompasses a highly
complex scenario with a huge amount of different devices
that must cooperate with each other. This requires
effective orchestration mechanisms to guarantee the
smooth performance of applications and services. However,
mechanisms typically applied to the Cloud can not naturally
be migrated to the Fog given its particular characteristics. This
calls for the design and development of new orchestration
mechanisms for the Fog.

In this paper, a hybrid approach to manage the Fog
is proposed, using the combination of orchestration and
choreography styles of managing for different regions of
the infrastructure. The architecture outlined, framed in the
SORTS project, enables a global view which allows general
optimizations, and also automated dynamic reactions at the
lower levels. Additionally, by using different instances of the



orchestrator, it is possible to apply different optimization goals
according to the application’s requirements.

As future works, optimization models to apply in the
different modules of the orchestrator are going to be
developed, such as service placement mechanisms aimed
at low latency, and disjoint path computation-focused on
high resilience. Furthermore, a real implementation of the
orchestrator is going to be carried out and evaluated in a real
scenario in the context of the SORTS project.

ACKNOWLEDGMENT

The work presented in this paper was partially carried out in the scope of
the projects: �MobiWise: From mobile sensing to mobility advising� (P2020
SAICTPAC/0011/2015), co-financed by COMPETE 2020, Portugal 2020 - Operational
Program for Competitiveness and Internationalization (POCI), European Unions
ERDF (European Regional Development Fund); and SORTS, financed by the
the CAPES - Coordenção de Aperfeiçoamento de Pessoal de Nı́vel Superior
�CAPES-FCT/8572/14-3� and by the FCT - Foundation for Science and Technology
�FCT/13263/4/8/2015/S�. This work was also co-financed by the DenseNet project
�PTDC/EEISCR/6453/2014�, which is a FCT/FEDER/COMPETE 2020 project.

NOTE

This is a preliminary version of the paper. The final publication is available at IEEE
Xplore via http://ieeexplore.ieee.org/document/8114500

REFERENCES

[1] A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “Orchsec: An
orchestrator-based architecture for enhancing network-security using
network monitoring and sdn control functions,” in 2014 IEEE Network
Operations and Management Symposium (NOMS), May 2014, pp. 1–9.

[2] B. Jaeger, “Security orchestrator: Introducing a security orchestrator
in the context of the etsi nfv reference architecture,” in 2015 IEEE
Trustcom/BigDataSE/ISPA, vol. 1, Aug 2015, pp. 1255–1260.

[3] A. Mayoral, R. Vilalta, R. Muoz, R. Casellas, and R. Martnez,
“Experimental seamless virtual machine migration using an integrated
sdn it and network orchestrator,” in 2015 Optical Fiber Communications
Conference and Exhibition (OFC), March 2015, pp. 1–3.

[4] L. Velasco, A. Asensio, A. Castro, J. L. Berral, D. Carrera, V. Lpez,
and J. P. Fernndez-Palacios, “Cross-stratum orchestration and flexgrid
optical networks for data center federations,” IEEE Network, vol. 27,
no. 6, pp. 23–30, November 2013.

[5] R. Vilalta, A. Mayoral, R. Casellas, R. Martnez, and R. Muoz,
“Experimental demonstration of distributed multi-tenant cloud/fog and
heterogeneous sdn/nfv orchestration for 5g services,” in 2016 European
Conference on Networks and Communications (EuCNC), June 2016, pp.
52–56.

[6] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and
N. Venkatasubramanian, “A software defined networking architecture
for the internet-of-things,” in 2014 IEEE Network Operations and
Management Symposium (NOMS), May 2014, pp. 1–9.

[7] B. Martini, D. Adami, A. Sgambelluri, M. Gharbaoui, L. Donatini,
S. Giordano, and P. Castoldi, “An sdn orchestrator for resources chaining
in cloud data centers,” in 2014 European Conference on Networks and
Communications (EuCNC), June 2014, pp. 1–5.

[8] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos,
“Fog orchestration for internet of things services,” IEEE Internet
Computing, vol. 21, no. 2, pp. 16–24, Mar. 2017. [Online]. Available:
https://doi.org/10.1109/MIC.2017.36

[9] S. Cherrier, Y. M. Ghamri-Doudane, S. Lohier, and G. Roussel,
“Services collaboration in wireless sensor and actuator networks:
Orchestration versus choreography,” in 2012 IEEE Symposium
on Computers and Communications (ISCC), July 2012, pp.
000 411–000 418.

[10] G. Pedraza and J. Estublier, “Distributed orchestration versus
choreography: The focas approach,” in Trustworthy Software
Development Processes: International Conference on Software Process,
ICSP 2009, Q. Wang, V. Garousi, R. Madachy, and D. Pfahl, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 75–86.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-01680-6 9

[11] S. Meng and F. Arbab, “Web services choreography and orchestration
in reo and constraint automata,” in Proceedings of the 2007
ACM Symposium on Applied Computing, ser. SAC ’07. New
York, NY, USA: ACM, 2007, pp. 346–353. [Online]. Available:
http://doi.acm.org/10.1145/1244002.1244085

[12] T. Furtado, E. Francesquini, N. Lago, and F. Kon, “A middleware for
reflective web service choreographies on the cloud,” in Proceedings
of the 13th Workshop on Adaptive and Reflective Middleware, ser.
ARM ’14. New York, NY, USA: ACM, 2014, pp. 9:1–9:6. [Online].
Available: http://doi.acm.org/10.1145/2677017.2677026

[13] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog:
Towards a comprehensive definition of fog computing,” SIGCOMM
Computer Communication Review, vol. 44, no. 5, pp. 27–32, Oct.
2014. [Online]. Available: http://doi.acm.org/10.1145/2677046.2677052

[14] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
New York, NY, USA: ACM, 2012, pp. 13–16. [Online]. Available:
http://doi.acm.org/10.1145/2342509.2342513

[15] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in 2015 Third IEEE Workshop on Hot Topics in Web
Systems and Technologies (HotWeb), Nov 2015, pp. 73–78.

[16] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the 2015 Workshop
on Mobile Big Data, ser. Mobidata ’15. New York, NY, USA:
ACM, 2015, pp. 37–42. [Online]. Available: http://doi.acm.org/10.1145/
2757384.2757397

[17] S.-C. Hung, H. Hsu, S.-Y. Lien, and K.-C. Chen, “Architecture
harmonization between cloud radio access networks and fog networks,”
IEEE Access - Special Section on Emerging Cloud-Based Wireless
Communications and Networks, vol. 3, pp. 3019–3034, Dec. 2015.

[18] P. Varshney and Y. Simmhan, “Demystifying fog computing:
Characterizing architectures, applications and abstractions,” in 1st IEEE
International Conference on Fog and Edge Computing (ICFEC2017),
May 2017.

[19] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, May 2016.

[20] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in Proceedings of the Third
ACM Workshop on Mobile Cloud Computing and Services, ser. MCS
’12. New York, NY, USA: ACM, 2012, pp. 29–36. [Online]. Available:
http://doi.acm.org/10.1145/2307849.2307858

[21] Y. Jararweh, L. Tawalbeh, F. Ababneh, and F. Dosari, “Resource efficient
mobile computing using cloudlet infrastructure,” in 2013 IEEE 9th
International Conference on Mobile Ad-hoc and Sensor Networks, Dec
2013, pp. 373–377.

[22] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, “On the computation
offloading at ad hoc cloudlet: architecture and service modes,” IEEE
Communications Magazine, vol. 53, no. 6, pp. 18–24, June 2015.

[23] Y. Gao, W. Hu, K. Ha, B. Amos, P. Pillai, and M. Satyanarayanan, “Are
Cloudlets Necessary?” Carnegie Mellon University, School of Computer
Science, Tech. Rep., Oct 2015.

[24] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog Computing:
A Platform for Internet of Things and Analytics. Cham: Springer
International Publishing, 2014, pp. 169–186. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-05029-4 7

[25] Z. Hao, E. Novak, S. Yi, and Q. Li, “Challenges and software
architecture for fog computing,” IEEE Internet Computing, vol. 21, no. 2,
pp. 44–53, Mar 2017.

[26] M. Aazam and E.-N. Huh, “Fog computing and smart gateway based
communication for cloud of things,” in 2014 International Conference
on Future Internet of Things and Cloud (FiCloud), Aug 2014, pp.
464–470.

[27] Z. Sheng, H. Wang, C. Yin, X. Hu, S. Yang, and V. C. M. Leung,
“Lightweight management of resource-constrained sensor devices in
internet of things,” IEEE Internet of Things Journal, vol. 2, no. 5, pp.
402–411, Oct 2015.

[28] M. Aazam and E.-N. Huh, “Fog computing micro datacenter based
dynamic resource estimation and pricing model for iot,” in 2015 IEEE
29th International Conference on Advanced Information Networking and
Applications, March 2015, pp. 687–694.

[29] I. Stojmenovic, “Fog computing: A cloud to the ground support for
smart things and machine-to-machine networks,” in 2014 Australasian



Telecommunication Networks and Applications Conference (ATNAC),
Nov 2014, pp. 117–122.

[30] T. H. Luan, L. Gao, Z. Li, Y. Xiang, and L. Sun, “Fog computing:
Focusing on mobile users at the edge,” CoRR, vol. abs/1502.01815,
2015. [Online]. Available: http://arxiv.org/abs/1502.01815

[31] M. Aazam and E.-N. Huh, “Dynamic resource provisioning through fog
micro datacenter,” in 2015 IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops), March
2015, pp. 105–110.

[32] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in 2014 Federated Conference on Computer Science
and Information Systems, Sept 2014, pp. 1–8.

[33] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog
orchestration for iot services: Issues, challenges and directions,” IEEE
Internet Computing, vol. 21, no. 2, pp. 16–24, Mar 2017.


